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1. Video-Level Comprehensive Results
Due to the space limit, we mainly reported the perfor-

mance of our models in term of AUC in the main text. Here
we provide more results in terms of AUC, AP, and EER for
Table 4 and 5 in the main text. Note that these results are at
video-level, computed by averaging the classification scores
of all video frames. The experiments are conducted under
the cross-dataset setting, in which we train our model only
with real data from the raw version of FF++ [15] and the
fake/positive samples are generated by I2G (more detailed
are included in Sec. 4.2 in the main text).

Method Test Set Evaluation Metrics (%)

AUC AP EER

PCL + I2G

DF [5] 100.00 100.00 0.00
F2F [17] 98.97 99.32 3.57
FS [8] 99.86 99.86 1.43

NT [18] 97.63 98.20 6.43
FF++ [15] 99.11 99.80 3.57

DFD [4] 99.07 99.89 4.42
DFR [7] 99.41 99.51 3.48
CD1 [10] 98.30 98.97 7.89
CD2 [10] 90.03 94.45 17.98
DFDC [2] 67.52 69.99 37.18

DFDC-P [3] 74.37 82.94 31.87

Table 1: Comprehensive evaluation of our model in terms of video-
level AUC, AP, and EER on seven datasets.

Additional qualitative results are shown in Fig. 1. These
images are randomly chosen from CD2 [10] and DFDC [2]
test sets, which are currently the most challenging datasets
in deepfake detection. The visualization is obtained by up-
sampling the 2D global heatmap M̂ to the size of H×W to
match the input size, where M̂ is generated by fusing the
predicted 4D consistency volume V̂.

2. Frame-Level Results on Celeb-DF-v2
Deepfake detection accuracy is usually reported at the

video-level. Methods aggregate the frame-level scores to
form video-level predictions using various strategies, e.g.,
averaging (ours), confident strategy [16], LSTM [6]. Here
we compare our model with other state-of-the-art methods
in terms of frame-level AUC on CD2 [10]. All models are
trained under the cross-dataset setting (see Sec. 4.2 in the
main text for more details). This means they are trained
on FF++ and evaluated on CD2. As shown in Table 2,
our model outperforms other state-of-the-art method [11]
by over 8%. Note the baseline results are directly cited from
Masi et al. [11]. Different compression levels of FF++ are
adopted by the methods, e.g., c23 for Zhao et al. [20], c40
for Masi et al. [11], and raw for ours.

Method CD2 (Frame-Level AUC (%))

Two-stream [21] 53.8
Meso4 [1] 54.8
MesoInception4 53.6
HeadPose [19] 54.6
FWA [9] 56.9
VA-MLP [12] 55.0
VA-LogReg 55.1
Xception-raw [15] 48.2
Xception-c23 65.3
Xception-c40 65.5
Multi-task [13] 54.3
Capsule [14] 57.5
DSP-FWA [9] 64.6
Zhao et al. [20] 67.4
Masi et al. [11] 73.4

PCL + I2G 81.8

Table 2: Cross-dataset evaluation of our model in terms of frame-
level AUC on CD2 dataset. The performances of existing methods
are cited for comparison.
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Figure 1: Visualization of the predicted consistency maps M̂, which try to localize the modified regions. We use the model trained with
real videos of FF++ augmented by I2G in the cross-dataset, and the predictions are computed from the predicted consistency volume, as
mentioned in Section 3.1 in the main text. The ground truth modified regions are generated by DSSIM, as discussed in Section 4.2 in the
main text.



3. Different Backbones
In this paper, we adopt ResNets as backbone, as they

are among the most popular classification networks; an ex-
ample of the PCL architecture is illustrated in Fig. 2. Our
contribution does not rely on any particular choice of the
model architecture. However, it is still interesting to dis-
cover if increasing the model capacity improves the cross-
dataset generalization. We build our model with ResNets of
various depths, and report the results in Table 3. The perfor-
mance increase is noticeable from ResNet-18 to ResNet-50
but diminishes as we go deeper.
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Figure 2: An example of PCL architecture, where ResNet-34 is
adopted as backbone. The features are shown as the shape of their
tensors, and proper reshaping is performed.

⊗
denotes matrix

multiplication, and θ is 1×1×1 convolution.

Backbone Test Set (AUC (%)) Avg
DFR CD2 DFDC DFDC-P

ResNet-18 96.92 79.59 58.22 68.23 75.74
ResNet-34 99.41 90.03 67.52 74.37 82.83
ResNet-50 99.13 90.70 70.69 75.10 83.90
ResNet-152 99.5 90.88 70.42 69.77 82.64

Table 3: Ablation study of different backbones. The models are all
trained with λ = 10. The performance saturates as the depth of
the model increases.

4. Test Set Statistics

Test Set # Real / Fake Videos

FaceForensics++ (FF++) [15] 140 / 560
FF++ - Deepfakes (DF) [5] 140 / 140
FF++ - Face2Face (F2F) [17] 140 / 140
FF++ - FaceSwap (FS) [8] 140 / 140
FF++ - NeuralTextures (NT) [18] 140 / 140
DeepfakeDetection (DFD) [4] 363 / 3431
Celeb-DF-v1 (CD1) [10] 38 / 62
Celeb-DF-v2 (CD2) [10] 178 / 340
DFDC Public (DFDC) [2] 2000 / 2000
DFDC Preview (DFDC-P) [3] 276 / 504
DeeperForensics-1.0 (DFR) [7] 201 / 201

Table 4: Statistics of real and fake videos in the test sets.

5. Computational Complexity
Each vector of size C in the source feature map

of size H/P×W/P×C corresponds to a P×P patch in
the input image, and P is the down-sampling factor.
The additional computations from PCL consist of (1)
embedding feature map into size H/P×W/P×C ′ with
O(CC ′HW/P 2) flops and (2) computing pair-wise con-
sistency with O(C ′H2W 2/P 4) flops. In practice, we use
H=W=256, C=256, C ′=128, P=16, and ResNet-34 as
backbone, and PCL contributes 48.12M FLOPs, 65.5K pa-
rameters and 0.0009 seconds to a total of 9.62G FLOPs,
21.3M parameters and 0.0234 seconds, for a forward pass
of a single image, running on one NVIDIA Tesla V100 GPU
with 16GB of memory.

6. Consistency Map Generation
For visualization, we assume there are two source feature

groups in each image. The top-left image patch belongs
to group 0 and dissimilar patches to it belong to group 1.
For a patch at (h,w) with a H×W consistency score ma-
trix M̂Ph,w = {m̂Ph,w

i,j }, we get a soft group assignment as

its cosine similarity to the top-left patch, m̂Ph,w

0,0 . We calcu-
late the corresponding grayscale value of this patch in the
consistency map by averaging |m̂Ph,w

0,0 − m̂
Ph,w

i,j |. In this
way, similar grayscale values in the visualization indicate
the corresponding patches are likely to belong to the same
source feature group.
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