
Appendix:
The Surprising Effectiveness of Visual Odometry Techniques

for Embodied PointGoal Navigation

This appendix is structured as follows:

• Sec. A provides the formal derivation of the geometric
invariance loss described in Sec. 3.2.

• Sec. B describes the technical details to generate the
egocentric top-down projection discussed in Sec. 3.4.

• Sec. C describes the navigation policy’s architecture
and hyperparameters used for training.

• Sec. D gives details about the visual odometry model’s
training and inference.

• Sec. E states implementation details of DeepVO as well
as our model’s performance on KITTI.

• Sec. F demonstrates that we cannot accurately estimate
relative pose from depth due to sensor’s noises.

• Sec. G provides more qualitative results to demonstrate
the performance of our model.

A. Formal Derivation for Geometric Invari-
ance Loss

Recall that we predict bHCt!Ct+1 2 SE(2) from two
consecutive egocentric observations (It, It+1). Intuitively,
invariance is obtained when observing (It, It+1) followed
by (It+1, It). Due to the invertibility of transformations be-
tween coordinate systems Ct and Ct+1, we have the following
relation between ground-truth transformations:

HCt!Ct+1HCt+1!Ct = I3⇥3, (S1)

where I3⇥3 is the three-dimensional identity matrix.
Meanwhile, an element from SE(2) is defined as follows:

HCt!Ct+1 ,

RCt!Ct+1 ⇠Ct!Ct+1

1

�

where RCt!Ct+1 =


cos(✓Ct!Ct+1) � sin(✓Ct!Ct+1)
sin(✓Ct!Ct+1) cos(✓Ct!Ct+1)

�
.

(S2)

Note, the rotation matrix can be computed via RCt!Ct+1 =
exp

�
alg(✓Ct!Ct+1)

�
, i.e., by applying the exponential map

exp on alg : R 7! R2⇥2, the function that maps an an-
gle from R to an element of the Lie algebra so(2), namely

alg(✓) = ✓


0 �1
1 0

�
. When replacing the rotation matrix in

Eq. (S2) with this representation and expanding the relation
given in Eq. (S1), we obtain:


exp

�
alg(✓Ct!Ct+1)

�
⇠Ct!Ct+1

1

�

·

exp

�
alg(✓Ct+1!Ct)

�
⇠Ct+1!Ct

1

�
= I3⇥3. (S3)

After multiplying out the left-hand side we obtain the fol-
lowing system of equations:
(
exp

�
alg(✓Ct!Ct+1 + ✓Ct+1!Ct)

�
= I2⇥2

exp
�
alg(✓Ct!Ct+1)

�
· ⇠Ct+1!Ct + ⇠Ct!Ct+1 = 0

.

(S4)

Upon simplification, this results in
(
✓Ct!Ct+1 + ✓Ct+1!Ct = 0

exp
�
alg(✓Ct!Ct+1)

�
· ⇠Ct+1!Ct + ⇠Ct!Ct+1 = 0

,

(S5)

which were used in Eq. (6) and Eq. (7) of the main
manuscript to encourage the geometric invariance via the
two losses:

Linv, rot
Ct!Ct+1

,
��b✓Ct!Ct+1 + b✓Ct+1!Ct

��2
2
. (S6)

Linv, trans
Ct!Ct+1

,
�� exp

⇣
alg(b✓Ct!Ct+1)

⌘
· b⇠Ct+1!Ct + b⇠Ct!Ct+1

��2
2

=
�� bRCt!Ct+1 · b⇠Ct+1!Ct + b⇠Ct!Ct+1

��2
2
. (S7)

This concludes the derivation.

B. Technical Details for Generating Egocentric
Top-Down Projection

We describe details on how to compute the egocentric
top-down projection discussed in Sec. 3.4.
From depth map to 3D point. Given a pixel of the depth
map depth at image coordinates (u, v)8, we obtain the 3D
point’s Cartesian coordinates in the camera coordinate sys-
tem from:

(x, y, z)T = h(u, v, depth(u, v))

= (K�1 · (u+ 0.5, v + 0.5, 1)T) · depth(u, v),
(S8)

where h(·, ·, ·) represents the function for generating 3D co-

8We follow common practice and let +U point downward while +V
points to the right.

ordinates9. Here K 2 R3⇥3 is the intrinsic matrix assumed
to be known and depth(u, v) denotes the z-buffer value at
(u, v). Note u+0.5 and v+0.5 are used to compute the 3D
point from the center of the pixel and (u + 0.5, v + 0.5, 1)
is the homogeneous coordinate. Further, z = depth(u, v).
Computing bounding box for point clouds. After gener-
ating 3D point clouds, we obtain a bounding box for those
3D points. Specifically, 1) for the Cartesian Z axis, we have
zmin and zmax. They refer to the minimum and the maximum
depth values, which are specified by the sensor; 2) for the
Cartesian X axis, we have xmin and xmax which come from
leftmost/rightmost pixels in depth observation depth. These
values will be utilized to compute pixel coordinates in the
next step.
Computing 2D pixel coordinates of top-down projection.
As mentioned in Sec. 3.1, we assume that the agent’s motion
is planar. Therefore, we ignore coordinates in the direc-
tion perpendicular to the plane. Concretely, we use coor-
dinates (x, z). Therefore, we obtain pixel coordinates in
top-down projection for such a point as (row, col), where
row = bH · z�zmin

zmax�zmin
c and col = bW · x�xmin

xmax�xmin
c, where

H ⇥W represents the top-down projection’s resolution.
Generating soft top-down projection. 1) For every pixel
in depth, we repeat the aforementioned steps to compute the
corresponding pixel coordinates (row, col) in the top-down
projection. 2) We count the number of points which fall into
each (row, col) cell. A soft egocentric top-down projection
s-proj is obtained by normalizing the count to the range of
[0, 1].

C. Navigative Policy Training Details
In Tab. S1, we provide training details of the navigation

policy used in our experiments. We explain the strucutre of
our policy in the following paragraphs.
Visual encoder. We use ResNet-18 [17] as our visual fea-
ture extractor to process an egocentric observation of size
341(width) ⇥ 192(height). Following [53], we replace ev-
ery BatchNorm [20] layer with GroupNorm [54] to deal
with highly-correlated trajectories in on-policy RL and mas-
sively distributed training. A 2x2-AvgPool layer is added
before ResNet-18 so that the effective resolution is 170⇥ 96.
ResNet-18 produces a 256 ⇥ 6 ⇥ 3 feature map, which is
converted to a 114⇥ 6⇥ 3 feature map through a 3x3-Conv
layer.
Point-Goal encoder. At each time step t, the agent receives
the point-goal’s relative position vg

t or bvg
t in polar coordi-

nate form. Similar to [53], we convert the polar coordinates
into a magnitude and a unit vector to alleviate the discon-
tinuity at the x-axis in polar coordinates. A subsequent
fully-connected layer transforms it into a 32-dimensional
representation.

9Following common practice, +X points to the right, +Y points up-
ward and +Z points backward.

Navigation Policy. The 2-layer LSTM in the navigation
policy takes three inputs: 1) a 512-dimensional vector of
egocentric observations, which is obtained by flattening the
114⇥ 6⇥ 3 feature map from the visual encoder into a 2052-
dimensional vector and then feeding it into a fully-connected
layer; 2) a 32-dimensional output of the goal encoder; 3)
a 32-dimensional embedding of the previous action (or the
start-token when beginning a new episode). The output of the
2-layer LSTM is fed into a fully-connected layer, obtaining
a distribution over the action space and an estimate of the
value function.

Table S1: Hyperparameters.

Hyperparameter Value
PPO (DD-PPO)

Clip parameter [44] 0.2
Rollout timesteps 128
Epochs 2
Value loss coefficient 0.5
Discount factor (�) 0.99
GAE parameter (�) [43] 0.95
Normalize advantage False
Preemption threshold [53] 0.6

Training

Optimizer Adam [26]
(�1,�2) for Adam (0.9, 0.999)
Learning rate 2.5e�4

Gradient clip norm 0.2

D. VO Model Training and Inference Details
D.1. Environment Details

Consistent with [41], in Tab. S2, we show the inventory
of all scenes from Gibson [56] that were used in our experi-
ments. Each of them is rated with quality level 4 or above
as described in [41]. From the 72 scenes of the train split,
we create a training dataset D with one million data points
as described in Sec. 4.1. Similarly, a validation dataset Dval
with 50,000 data points is generated from 14 scenes of the
val split.

D.2. VO Dataset Statistics
Tab. S3 summarizes the statistics of our visual odometry

(VO) training dataset D. As mentioned in Sec. 4.1, since our
training data is sampled from shortest-path trajectories, the
ratio of actions roughly represents the percentage of actions
that appeared in actual navigation tasks.

Tab. S3 provides another reason to use a separate model
per action (SepAct) in a visual odometry model. Since the

Table S2: Gibson-4+ scene split.

Split Scenes
Train Adrian, Applewold, Bolton, Cooperstown, Goffs, Hominy, Mobridge, Nuevo, Quantico, Roxboro, Silas,

Stanleyville, Albertville, Arkansaw, Bowlus, Crandon, Hainesburg, Kerrtown, Monson, Oyens, Rancocas,
Sanctuary, Sodaville, Stilwell, Anaheim, Avonia, Brevort, Delton, Hambleton, Maryhill, Mosinee, Parole, Reyno,
Sasakwa, Soldier, Stokes, Andover, Azusa, Capistrano, Dryville, Haxtun, Mesic, Nemacolin, Pettigrew, Roane,
Sawpit, Spencerville, Sumas, Angiola, Ballou, Colebrook, Dunmor, Hillsdale, Micanopy, Nicut, Placida, Roeville,
Seward, Spotswood, Superior, Annawan, Beach, Convoy, Eagerville, Hometown, Mifflintown, Nimmons,
Pleasant, Rosser, Shelbiana, Springhill, Woonsocket

Val Cantwell, Denmark, Eastville, Edgemere, Elmira, Eudora, Greigsville, Mosquito, Pablo, Ribera, Sands, Scioto,
Sisters, Swormville

dataset is imbalanced with respect to the type of action, a uni-
fied model across all actions needs to deal with imbalanced
training data. Empirically, we find that a unified model over-
fits for turn left and turn right while the performance
of move forward has not converged yet. The SepAct de-
sign overcomes this issue. More discussion is presented in
Sec. D.4.

In Fig. S1, we illustrate the distribution of translation and
rotation caused by each action. We note that for each of the
actions, the distribution of the translation changes has a peak
around 0m, which is caused by the agent getting stuck when
encountering collisions.

D.3. Qualitative Examples from D

Fig. S2 shows qualitative examples of translation and
rotation changes resulting from each action. Apart from the
noisy egocentric observations, the complexity of estimating
the SE(2) transformation also stems from similar translation
and rotation changes across different actions. For example,
⇠xCt!Ct+1

in all six figures is extremely similar.

D.4. VO Model Evaluation

Fig. S3 shows the evaluation curve on Dval for the Unified
and SepAct models, namely the VO model of Row 6 and
Row 8 in Tab. 2. We define sys error as the average abso-
lute difference between ground-truth and estimated values
if the VO model always predicts the mean of the training
data in Fig. S1. For example, if we let Dforward ⇢ D and
Dforward

val ⇢ Dval be datasets whose data points are generated
by the move forward action, we compute the sys error of
move forward on ⇠xCt!Ct+1

as:

sys error =
1

|Dforward
val |

X

dCt!Ct+12Dforward
val

|⇠xCt!Ct+1
� µ|,

where µ =
1

|Dforward|
X

dCt!Ct+12Dforward

⇠xCt!Ct+1
. (S9)

Here dCt!Ct+1 =
�
(It, It+1), ⇠Ct!Ct+1 , ✓Ct!Ct+1

�
and

µ = 0.018 from the first histogram of Fig. S1a. Note,
sys error is computed equivalently for ⇠xCt!Ct+1

, ⇠zCt!Ct+1
,

and ✓Ct!Ct+1 of all three actions. The closer the evaluation
curve is to sys error, the less useful the information that
the VO model learns. Apparently, the SepAct model learns
more helpful information as its curve is further away from
the sys error line.

Meanwhile, as discussed in Sec. D.2, the training dataset,
which represents the actual path’s action distribution, is im-
balanced. A unified model may encounter overfitting on one
action while yielding unsatisfactory prediction on another.
Specifically, in the first plot of Fig. S3a, the performances on
turn left and turn right encounters overfitting at around
the 30th epoch, while the performance on move forward im-
proves even at the 120th epoch. This issue does not arise in
SepAct’s evaluation curve in Fig. S3b, verifying the efficacy
of SepAct.

E. DeepVO and KITTI
In this section we discuss implementation details of

DeepVO as well as our model’s performance on KITTI.
DeepVO implementation. There isn’t an official code of
DeepVO and the most-starred public one yields incorrect re-
sults (Tab. S4’s Col. 2)10. Our re-implementation of DeepVO
(Col. 3 in Tab. S4) matches the numbers reported in the orig-
inal DeepVO paper (Col. 1)11. Therefore, we apply our
implemented DeepVO in the PointGoal navigation task.
Our VO module on KITTI [15]. In order to run our VO
module on KITTI, we need depth information. We use one
of the best entries (DeepPruner [13]) in Tab. 3 from [29] to
obtain a depth estimate. As can be inferred from Tab. S4’s
Col. 3 vs. 4 and Tab. 2’s Row 0 vs. Row 18, outdoor and
indoor tasks have their own challenges.

10https://github.com/ChiWeiHsiao/DeepVO-pytorch
11Differences are due to the rare train/test split in the DeepVO paper

while we train on Seq00-08 and evaluate on Seq09/10 as Tab. 1 in [8].

Table S3: Visual odometry training dataset statistics.

Category
Action

move forward turn left turn right Total

Non-collided 503,890 (87.90%) 186,291 (87.32%) 197,318 (92.49%) 887,499 (88.75%)
Collided 69,342 (12.10%) 27,143 (12.68%) 16,016 (7.51%) 112,501 (11.25%)

Total 573,232 213,434 213,334 1,000,000

(a) Action move forward.

(b) Action turn left.

(c) Action turn right.

Figure S1: Translation and rotation distribution histogram of each action in our VO training dataset. Because the simulator aligns the forward
direction with the negative direction of the axis, most of the ⇠

z
Ct!Ct+1

values for move forward are negative.

F. Estimate Relative Pose from Depth

Because depth is noisy as mentioned in Sec. 3, it prevents
reliable estimation of relative pose. To verify, we experiment
with the following pipeline.

1) Find matching points. To extract and match point
descriptors in adjacent RGB frames, we use the recent
SuperPoint-SuperGlue (SPSG) [12, 39] which was shown to

improve over traditional hand-engineered methods. Qualita-
tively, Fig. S4a verifies high-quality matches.

2) Compute relative pose. We use findEssentialMat and
recoverPose from OpenCV to recover rotation b✓Ct!Ct+1 and
direction of translation. Fig. S4b shows inliers for Fig. S4a
found by OpenCV. High-quality inliers ease the analysis
as the final VO prediction error unlikely stems from mis-
matched points.

(a) move forward, no collision, (0.05, 0.19,�0.26). (b) move forward, with collision, (0.00, 0.00,�0.20).

(c) turn left, no collision, (�0.04,�0.01, 32.8). (d) turn left, with collision, (0.00, 0.00, 38.6).

(e) turn right, no collision, (�0.02, 0.00,�28.4). (f) turn right, with collision, (0.06, 0.00,�29.4).

Figure S2: Qualitative examples of translation and rotation changes caused by each action. The changes are presented in the order of
(⇠xCt!Ct+1

, ⇠
z
Ct!Ct+1

, ✓Ct!Ct+1).

Table S4: Results on KITTI. Values are rrel(
�)/trel(%).

1.DeepVO† 2.DeepVO‡ 3.DeepVO§ 4.RGB-D-DD-S-Proj

Seq09 N/A 33.37 / 92.97 4.016 / 11.14 7.062 / 19.22
Seq10 8.83 / 8.11 38.68 / 90.22 4.498 / 11.24 9.298 / 15.80

(a) Unified model.

(b) SepAct model.

Figure S3: Evaluation of VO models on generated validation dataset Dval. We show the average absolute difference between ground-truth
value and prediction from VO models. The y-axis uses log-scale. The sys error is defined in Sec. D.4.

3) Resolve scale ambiguity. 3).a With depth, we compute
3D coordinates of inliers in two camera coordinate systems.
3).b We rotate 3D coordinates in one frame with b✓Ct!Ct+1 .
3).c We compute the scale as the averaged norm between the
rotated coordinates and the coordinates in the other frame. To
obtain the final translation (⇠̂xCt!Ct+1

, ⇠̂zCt!Ct+1
), we rescale

the direction produced by OpenCV. The obtained VO error
(E1) is much larger than ours (E3) (Tab. S5) and prevents
successful navigation.
4) Additional oracle experiment. We conduct an oracle
experiment using ground-truth rotation ✓Ct!Ct+1 in 3).b.
From E2 vs. E3 (ours): directly estimating relative pose from
depth is inferior. Note, the validation set scenes are not used
for training our VO model (Sec. 4.1).

G. More Qualitative Results
In Fig. S5, we provide additional qualitative results when

integrating the navigation policy with our VO model.

(a) Matched points from SPSG.

(b) Inliers from OpenCV.

Figure S4: Qualitative examples for feature matching.

E1 (e�2) E2 (e�2) E3 (e�2)
(15.9, 21.3, 8.51) (3.97, 10.6, 0.00) (1.22, 0.86, 0.66)

Table S5: VO prediction error on Dval (50000 entries,
see Sec. D.1). Lower is better. Following Tab. 2, we report
(⇠̂xCt!Ct+1

, ⇠̂
z
Ct!Ct+1

, b✓Ct!Ct+1). E1: Feature Matching; E2: Fea-
ture Matching Oracle; E3: our result.

(a) Scioto, SPL 87%.

(b) Pablo, SPL 84%.

(c) Mosquito, SPL 83%.

(d) Denmark, SPL 82%.
(e) Greigsville, SPL 81%.

(f) Cantwell, SPL 78%.

(g) Eastville, SPL 78%.

(h) Edgemere, SPL 75%.
(i) Eudora, SPL 35%.

(j) Sisters, fail.

Figure S5: Qualitative results (best viewed in color). Agent is asked to navigate from blue square to green square. Blue curve is the actual
path the agent takes while red curve is based on the agent’s estimate of its location from the VO model by integrating over SE(2) estimation
of each step.

