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A. Implementation of DIML
A.1. The Sinkhorn Algorithm

The Sinkhorn algorithm [1] modifies the original optimal
transport problem (Eq.4) into the following one:

T ∗ = argmin
T≥0

tr(CT⊤) + λtr
(
T (log(T )− 11⊤)⊤

)
,

subject to T1 = µs, T⊤1 = µt,

(A.1)

where λ is a non-negative regularization parameter. By
adding the entropic regularizer, the Equation (A.1) becomes
a convex problem, which can be solved with Sinkhorn-
Knopp algorithm [12]. Starting from an initial matrix
K = exp(−C/λ), the problem can be solved by iteratively
projecting onto the marginal constraints until convergence:

a← µs/Kb, b← µt/K⊤a. (A.2)

After converged, we can obtain the optimal transport plan:

T ∗ = diag(a)Kdiag(b). (A.3)

A.2. Testing

In all of our experiments, we use ResNet50 [6] as our
backbone. Therefore, the size of the feature map before the
pooling layer is 7 × 7. To reduce computational costs, we
first use ROI Align [5] to pool the feature map to G×G and
G = 4 in most of our experiments unless otherwise noted.
According to the multi-scale matching algorithm, for each
image as a query, we first sort the images in the gallery using
the standard cosine similarity to obtain the indices of top-K
candidates IK (we useK = 100 in most of the experiments).
We then calculate the proposed structural similarity of all
the images in IK . To combine both global and structural
information, we use the sum of the cosine similarity and the
structural similarity for the top-K images to compute their
ranks. The regularization parameter λ in Equation (6) is set
to 0.05.

A.3. Training

Incorporating DIML into the training objectives is quite
straightforward. Generally, the loss functions in metric learn-
ing can be roughly categorized into distance-based methods

(e.g., Contrastive [4], Triplet [3], Margin [16]) and similarity-
based methods (e.g., Multi-Similarity [15], Arcface [2], N-
Pair [13]) For distance-based methods, we replace the origi-
nal distance function d with the average of d and our struc-
tural distance d struct; For similarity-based methods, we re-
place the original similarity function s with the average of s
and our structural similarity s struct. In this section, we will
use several loss functions as examples to demonstrate how
to apply DIML during training.

Margin [16] The Margin loss [16] is defined as

Lmargin(k, l) =
(
σ + (−1)I(y

k ̸=yl) (Dk,l − β)
)
+
,

(A.4)
where σ and β are learnable parameters, and Dkl is used to
measure the distance between image k and l:

Dk,l =
1

2

(
d struct(z

k, zl) + d(z̄k, z̄l)
)
, (A.5)

where d is Euclid distance and d struct is derived from d
using Equation (10).

Multi-Similarity [15] The original Multi-Similarity is de-
fined as:

s∗(k, l) =


s (k, l) , s (k, l) > minp∈Pk

s (k, p)− ϵ
s (k, l) , s (k, l) < maxn∈Nk

s (k, n) + ϵ

0, otherwise
,

(A.6)

LMS =
1

B

∑
k∈B

 1

α
log

1 + ∑
p∈Pk

exp (−α (s∗ (k, p)− λ))


+
1

β
log

[
1 +

∑
n∈Nk

exp (β (s∗ (k, n)− λ))

]]
,

(A.7)

where s(k, l) = s(ψk, ψl) is the cosine similarity of the
embeddings ψk, ψl of the two images. To utilize DIML, we



can replace s with

s(k, l)← 1

2

(
s(z̄k, z̄l) + s struct(z

k, zl)
)
. (A.8)

Note that in our notation both ψk and z̄k represent the same
embedding in RD.

ProxyNCA [8] It is also worth mentioning there are slight
difference when applying DIML to proxy-based methods
during training. Taking ProxyNCA [8] as example, the origi-
nal objective is

Lproxy = − 1

B

∑
k∈B

log

 exp
(
−d

(
ψk, ηy

k
)

∑
c∈C\{yk} exp (−d (ψk, ηc)

 ,

(A.9)
where d is Euclid distance and ηc ∈ RD is the proxy for

the c-th class. To use DIML, we need to use proxies with
the size RH×W×D, denoted as {ρc, c ∈ C}. Then, we can
replace the d(ψk, ηc) with

d(ψk, ηc)← 1

2

(
d(ψk, ηc) + d struct(z

k, ρc)
)
, (A.10)

where we also note that GAP(ρc) = ηc.

B. Experimental Details
B.1. Evaluation Metrics

We implement the same evaluation metrics as [9], in-
cluding Precision at 1 (P@1), R-Precision (RP), and Mean
Average Precision at R (MAP@R).
P@1 is also known as Recall@1 in metric learning. Given
a sample xq and feature encoder ϕ(·), the set of k nearest
neighbors of xq is calculated as the precision of k nearest
neighbors:

N k
q = argmin

N⊂Xtest,|N |=k

∑
xf∈N

de(ϕ(x
q), ϕ(xf )) (B.1)

where de(·, ·) is the euclidean distance. Then P@k can be
measured as

P@k =
1

|Xtest|
∑

xq∈Xtest

1

k

∑
xi∈Nk

q

{
1, yi = yq,

0, otherwise
,

(B.2)
where yi is the class label of sample xi. We only report P@1
in our experiments, i.e. k = 1.
R-precision is defined in [9]. Specifically, for each sam-
ple xq, let R be the number of images that are the same
class with xq and R-precision is simply defined as P@R (see
Equation B.2). However, R-precision does not consider the
ranking of correct retrievals, so it is not informative enough.

To tackle this problem, [9] introduced Mean Average Preci-
sion at R.
MAP@R is similar to mean average precision, but limit the
number of nearest neighbors to R. So it replaces precision in
MAP calculation with R-precision:

MAP@R =
1

R

R∑
i=1

P (i), (B.3)

where

P (i) =

{
P@i, if the i-th retrieval is correct;
0, otherwise. (B.4)

MAP@R is more informative than P@1 and it can be
computed directly from the embedding space without clus-
tering as post-processing.

B.2. Experimental Setups

For most of the baseline methods, we follow the imple-
mentation and the hyper-parameters in [14]. For Proxy An-
chor [7], we use their original implementation but set the
hyper-parameters as [14] (batch size 112, embedding size
128, etc.). Besides various loss functions, we also experi-
ment with different sampling methods. In Table 1 of the
original paper, we use suffixes to represent the sampling
methods (-R: Random; -D: Distance [16]; -S Semihard [11];
-H: Softhard [10]).

C. Detailed Results
In the original paper, we have demonstrated the effects of

truncation number K and feature map size G using charts.
In this section, we provide the original numerical results that
were used to plot those charts in Table 1 and Table 2.
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