Towards Interpretable Deep Metric Learning with Structural Matching
Supplementary Material

A. Implementation of DIML
A.1. The Sinkhorn Algorithm

The Sinkhorn algorithm [ 1] modifies the original optimal
transport problem (Eq.4) into the following one:

T* = argmintr(CT ") + Atr (T(log(T) —117)T),
T>0
subjectto T1=p°, T'1=/put,
(A.1)

where A is a non-negative regularization parameter. By
adding the entropic regularizer, the Equation (A.1) becomes
a convex problem, which can be solved with Sinkhorn-
Knopp algorithm [12]. Starting from an initial matrix
K = exp(—C/\), the problem can be solved by iteratively
projecting onto the marginal constraints until convergence:

a <+ °/Kb, b+ /K a. (A2)
After converged, we can obtain the optimal transport plan:
T* = diag(a)Kdiag(b). (A.3)
A.2. Testing

In all of our experiments, we use ResNet50 [6] as our
backbone. Therefore, the size of the feature map before the
pooling layer is 7 x 7. To reduce computational costs, we
first use ROI Align [5] to pool the feature map to G x G and
G = 4 in most of our experiments unless otherwise noted.
According to the multi-scale matching algorithm, for each
image as a query, we first sort the images in the gallery using
the standard cosine similarity to obtain the indices of top-K
candidates Zx (we use K = 100 in most of the experiments).
We then calculate the proposed structural similarity of all
the images in Zx. To combine both global and structural
information, we use the sum of the cosine similarity and the
structural similarity for the top-K images to compute their
ranks. The regularization parameter A in Equation (6) is set
to 0.05.

A.3. Training

Incorporating DIML into the training objectives is quite
straightforward. Generally, the loss functions in metric learn-
ing can be roughly categorized into distance-based methods

(e.g., Contrastive [4], Triplet [3], Margin [16]) and similarity-
based methods (e.g., Multi-Similarity [ 5], Arcface [2], N-
Pair [13]) For distance-based methods, we replace the origi-
nal distance function d with the average of d and our struc-
tural distance d g4yt ; For similarity-based methods, we re-
place the original similarity function s with the average of s
and our structural similarity s g¢;yct- In this section, we will
use several loss functions as examples to demonstrate how
to apply DIML during training.

Margin [16] The Margin loss [16] is defined as

Cmargin(k: l) = (J + (_1)I(yk¢yl) (Dk,l - ﬁ)) )
+
(A.4)
where o and [ are learnable parameters, and Dy, is used to
measure the distance between image & and [:

1
Dyi =35 (dseruct (27, 2") + d(2F, 21)) (A.5)

where d is Euclid distance and d s ¢t 1S derived from d
using Equation (10).

Multi-Similarity [15] The original Multi-Similarity is de-

fined as:
s(k,l), s(k,1)>minyep, s(k,p) —¢
s*(k, 1) =< s(k, 1), s(k1)<maxnen, s(k,n)+e,
0, otherwise
(A.6)
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where s(k,1) = s(y*,4!) is the cosine similarity of the
embeddings /¥, ¢! of the two images. To utilize DIML, we



can replace s with

sk, 1) % (s(5,2) + ssraa (5, 2) . (AB)

Note that in our notation both ¥)* and z* represent the same
embedding in RP.

ProxyNCA [8] Itis also worth mentioning there are slight
difference when applying DIML to proxy-based methods
during training. Taking ProxyNCA [8] as example, the origi-

nal objective is
I S R
= log
froy =73 fs \ Dceoviyry oxp (—d (U5,

n°) |’
(A9)
where d is Euclid distance and ¢ € R is the proxy for
the c-th class. To use DIML, we need to use proxies with
the size RF*W>D denoted as {p°, c € C}. Then, we can
replace the d(¢*, n¢) with

1
d@*,m%) « = (d(WF, %) + dstruce (27, 09)),  (A.10)
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where we also note that GAP(p¢) = n°.

B. Experimental Details
B.1. Evaluation Metrics

We implement the same evaluation metrics as [9], in-

cluding Precision at 1 (P@1), R-Precision (RP), and Mean
Average Precision at R (MAP@R).
P@1 is also known as Recall@]1 in metric learning. Given
a sample x7 and feature encoder ¢(-), the set of k nearest
neighbors of x4 is calculated as the precision of k nearest
neighbors:

Ny = argmin Y de(p(z?),6(xf))  (B.1)
NCX[CN(y‘lek zfeEN
where d.(-, ) is the euclidean distance. Then P@k can be

measured as

Y =y,
P@ |)(test| q;w z%\:[k { 0, otherwise
(B.2)
where 3 is the class label of sample 2!, We only report P@1
in our experiments, i.e. k = 1.
R-precision is defined in [9]. Specifically, for each sam-
ple x4, let R be the number of images that are the same
class with ¢ and R-precision is simply defined as P@ R (see
Equation B.2). However, R-precision does not consider the

ranking of correct retrievals, so it is not informative enough.

To tackle this problem, [9] introduced Mean Average Preci-
sion at R.

MAPG@R is similar to mean average precision, but limit the
number of nearest neighbors to R. So it replaces precision in
MAP calculation with R-precision:

R
1
MAPQR = — P B.3
- ; (i (B.3)
where
. P@j, if the i-th retrieval is correct;
P(i) = { 0, otherwise. (B.4)

MAP@R is more informative than P@1 and it can be
computed directly from the embedding space without clus-
tering as post-processing.

B.2. Experimental Setups

For most of the baseline methods, we follow the imple-
mentation and the hyper-parameters in [ |4]. For Proxy An-
chor [7], we use their original implementation but set the
hyper-parameters as [14] (batch size 112, embedding size
128, etc.). Besides various loss functions, we also experi-
ment with different sampling methods. In Table 1 of the
original paper, we use suffixes to represent the sampling
methods (-R: Random; -D: Distance [16]; -S Semihard [11];
-H: Softhard [10]).

C. Detailed Results

In the original paper, we have demonstrated the effects of
truncation number K and feature map size G using charts.
In this section, we provide the original numerical results that
were used to plot those charts in Table | and Table 2.
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Table 1: Comparisons of different truncation numbers. We test for different truncation number K ranging from 0 to 500.
Experimental results show that a small K can already bring considerable performance improvement.

. CUB-200 Cars196 SOP

Baseline K 'p@1 RP Me@R P@el RP M@R P@l RP MG@R
0 6247 3412 2314 7218 3200 2082 7839 4564 4234

10 6516 3456 2387 76.65 3252 2172 17926 4644 4320
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500 6489 34.12 2338 7850 3470 2381 7853 4560 42.23

Table 2: Effects of the size of feature map. Generally, the performance of our DIMLis better with higher G. DIML with
G = 4 yields good results within relatively low computational costs.
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