Towards Interpretable Deep Metric Learning with Structural Matching Supplementary Material

A. Implementation of DIML

A.1. The Sinkhorn Algorithm

The Sinkhorn algorithm [1] modifies the original optimal transport problem (Eq.4) into the following one:

$$\begin{split} T^* &= \mathop{\arg\min}_{T \ge 0} \operatorname{tr}(CT^{\top}) + \lambda \operatorname{tr}\left(T(\log(T) - \mathbf{1}\mathbf{1}^{\top})^{\top}\right),\\ \text{subject to} \quad T\mathbf{1} = \mu^{\mathrm{s}}, \quad T^{\top}\mathbf{1} = \mu^{\mathrm{t}}, \end{split} \tag{A.1}$$

where λ is a non-negative regularization parameter. By adding the entropic regularizer, the Equation (A.1) becomes a convex problem, which can be solved with Sinkhorn-Knopp algorithm [12]. Starting from an initial matrix $K = \exp(-C/\lambda)$, the problem can be solved by iteratively projecting onto the marginal constraints until convergence:

$$\boldsymbol{a} \leftarrow \mu^{\mathrm{s}}/K\boldsymbol{b}, \quad \boldsymbol{b} \leftarrow \mu^{\mathrm{t}}/K^{\top}\boldsymbol{a}.$$
 (A.2)

After converged, we can obtain the optimal transport plan:

$$T^* = \operatorname{diag}(\boldsymbol{a}) K \operatorname{diag}(\boldsymbol{b}).$$
 (A.3)

A.2. Testing

In all of our experiments, we use ResNet50 [6] as our backbone. Therefore, the size of the feature map before the pooling layer is 7×7 . To reduce computational costs, we first use ROI Align [5] to pool the feature map to $G \times G$ and G = 4 in most of our experiments unless otherwise noted. According to the multi-scale matching algorithm, for each image as a query, we first sort the images in the gallery using the standard cosine similarity to obtain the indices of top-Kcandidates \mathcal{I}_K (we use K = 100 in most of the experiments). We then calculate the proposed structural similarity of all the images in \mathcal{I}_K . To combine both global and structural information, we use the sum of the cosine similarity and the structural similarity for the top-K images to compute their ranks. The regularization parameter λ in Equation (6) is set to 0.05.

A.3. Training

Incorporating DIML into the training objectives is quite straightforward. Generally, the loss functions in metric learning can be roughly categorized into distance-based methods (*e.g.*, Contrastive [4], Triplet [3], Margin [16]) and similaritybased methods (*e.g.*, Multi-Similarity [15], Arcface [2], N-Pair [13]) For distance-based methods, we replace the original distance function d with the average of d and our structural distance d_{struct} ; For similarity-based methods, we replace the original similarity function s with the average of sand our structural similarity s_{struct} . In this section, we will use several loss functions as examples to demonstrate how to apply DIML during training.

Margin [16] The Margin loss [16] is defined as

$$\mathcal{L}_{\text{margin}}(k,l) = \left(\sigma + (-1)^{I(y^k \neq y^l)} \left(D_{k,l} - \beta\right)\right)_+,$$
(A.4)

where σ and β are learnable parameters, and D_{kl} is used to measure the distance between image k and l:

$$D_{k,l} = \frac{1}{2} \left(d_{\text{struct}}(z^k, z^l) + d(\bar{z}^k, \bar{z}^l) \right), \tag{A.5}$$

where d is Euclid distance and d_{struct} is derived from d using Equation (10).

Multi-Similarity [15] The original Multi-Similarity is defined as:

$$s^{*}(k,l) = \begin{cases} s(k,l), & s(k,l) > \min_{p \in \mathcal{P}_{k}} s(k,p) - \epsilon \\ s(k,l), & s(k,l) < \max_{n \in \mathcal{N}_{k}} s(k,n) + \epsilon \\ 0, & \text{otherwise} \end{cases}$$
(A.6)

$$\mathcal{L}_{MS} = \frac{1}{B} \sum_{k \in \mathcal{B}} \left[\frac{1}{\alpha} \log \left[1 + \sum_{p \in \mathcal{P}_k} \exp\left(-\alpha \left(s^*\left(k, p\right) - \lambda\right)\right) \right] + \frac{1}{\beta} \log \left[1 + \sum_{n \in \mathcal{N}_k} \exp\left(\beta \left(s^*\left(k, n\right) - \lambda\right)\right) \right] \right],$$
(A.7)

where $s(k, l) = s(\psi^k, \psi^l)$ is the cosine similarity of the embeddings ψ^k, ψ^l of the two images. To utilize DIML, we

can replace s with

$$s(k,l) \leftarrow \frac{1}{2} \left(s(\bar{z}^k, \bar{z}^l) + s_{\text{struct}}(z^k, z^l) \right).$$
(A.8)

Note that in our notation both ψ^k and \bar{z}^k represent the same embedding in \mathbb{R}^D .

ProxyNCA [8] It is also worth mentioning there are slight difference when applying DIML to proxy-based methods during training. Taking ProxyNCA [8] as example, the original objective is

$$\mathcal{L}_{\text{proxy}} = -\frac{1}{B} \sum_{k \in \mathcal{B}} \log \left(\frac{\exp\left(-d\left(\psi^{k}, \eta^{y^{k}}\right)\right)}{\sum_{c \in \mathcal{C} \setminus \{y^{k}\}} \exp\left(-d\left(\psi^{k}, \eta^{c}\right)\right)} \right),$$
(A.9)

where d is Euclid distance and $\eta^c \in \mathbb{R}^D$ is the proxy for the c-th class. To use DIML, we need to use proxies with the size $\mathbb{R}^{H \times W \times D}$, denoted as $\{\rho^c, c \in C\}$. Then, we can replace the $d(\psi^k, \eta^c)$ with

$$d(\psi^k, \eta^c) \leftarrow \frac{1}{2} \left(d(\psi^k, \eta^c) + d_{\text{struct}}(z^k, \rho^c) \right), \quad (A.10)$$

where we also note that $GAP(\rho^c) = \eta^c$.

B. Experimental Details

B.1. Evaluation Metrics

We implement the same evaluation metrics as [9], including Precision at 1 (P@1), R-Precision (RP), and Mean Average Precision at R (MAP@R).

P@1 is also known as Recall@1 in metric learning. Given a sample x^q and feature encoder $\phi(\cdot)$, the set of k nearest neighbors of x^q is calculated as the precision of k nearest neighbors:

$$\mathcal{N}_{q}^{k} = \operatorname*{arg\,min}_{\mathcal{N} \subset \mathcal{X}_{\text{test}}, |\mathcal{N}|=k} \sum_{x^{f} \in \mathcal{N}} d_{e}(\phi(x^{q}), \phi(x^{f})) \qquad (B.1)$$

where $d_e(\cdot, \cdot)$ is the euclidean distance. Then $\mathrm{P}@k$ can be measured as

$$\mathbf{P}@k = \frac{1}{|\mathcal{X}_{\text{test}}|} \sum_{x_q \in \mathcal{X}_{\text{test}}} \frac{1}{k} \sum_{x^i \in \mathcal{N}_q^k} \begin{cases} 1, & y^i = y^q, \\ 0, & \text{otherwise} \end{cases}$$
(B.2)

where y^i is the class label of sample x^i . We only report P@1 in our experiments, i.e. k = 1.

R-precision is defined in [9]. Specifically, for each sample x^q , let R be the number of images that are the same class with x^q and R-precision is simply defined as P@R (see Equation B.2). However, R-precision does not consider the ranking of correct retrievals, so it is not informative enough.

To tackle this problem, [9] introduced Mean Average Precision at R.

MAP@R is similar to mean average precision, but limit the number of nearest neighbors to R. So it replaces *precision* in MAP calculation with *R-precision*:

MAP@
$$R = \frac{1}{R} \sum_{i=1}^{R} P(i),$$
 (B.3)

where

$$P(i) = \begin{cases} P@i, & \text{if the } i\text{-th retrieval is correct;} \\ 0, & \text{otherwise.} \end{cases}$$
(B.4)

MAP@R is more informative than P@1 and it can be computed directly from the embedding space without clustering as post-processing.

B.2. Experimental Setups

For most of the baseline methods, we follow the implementation and the hyper-parameters in [14]. For Proxy Anchor [7], we use their original implementation but set the hyper-parameters as [14] (batch size 112, embedding size 128, *etc.*). Besides various loss functions, we also experiment with different sampling methods. In Table 1 of the original paper, we use suffixes to represent the sampling methods (-R: Random; -D: Distance [16]; -S Semihard [11]; -H: Softhard [10]).

C. Detailed Results

In the original paper, we have demonstrated the effects of truncation number K and feature map size G using charts. In this section, we provide the original numerical results that were used to plot those charts in Table 1 and Table 2.

References

- Marco Cuturi. Sinkhorn distances: lightspeed computation of optimal transport. In *NIPS*, volume 2, page 4, 2013.
- [2] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for deep face recognition. In *CVPR*, pages 4690–4699, 2019.
- [3] Weifeng Ge. Deep metric learning with hierarchical triplet loss. In *ECCV*, pages 269–285, 2018. 1
- [4] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant mapping. In *CVPR*, volume 2, pages 1735–1742, 2006. 1
- [5] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In *ICCV*, 2017.
- [6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *CVPR*, pages 770–778, 2016. 1
- [7] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric learning. In *CVPR*, pages 3238–3247, 2020. 2

Table 1: **Comparisons of different truncation numbers.** We test for different truncation number *K* ranging from 0 to 500. Experimental results show that a small *K* can already bring considerable performance improvement.

Baseline	K	CUB-200			Cars196			SOP		
		P@1	RP	M@R	P@1	RP	M@R	P@1	RP	M@R
Margin[16]	0	62.47	34.12	23.14	72.18	32.00	20.82	78.39	45.64	42.34
	10	65.16	34.56	23.87	76.65	32.52	21.72	79.26	46.44	43.20
	50	65.16	35.43	24.54	76.65	33.64	22.83	79.26	46.44	43.19
	100	65.16	35.48	24.54	76.65	33.93	22.95	79.26	46.44	43.19
	500	65.16	35.48	24.54	76.65	33.93	22.95	79.26	46.44	43.19
Multi-Similarity[15]	0	62.56	32.74	21.99	74.81	32.72	21.60	77.90	44.97	41.54
	10	64.89	33.21	22.73	78.50	33.26	22.50	78.53	45.60	42.24
	50	64.89	34.04	23.37	78.50	34.46	23.72	78.53	45.60	42.23
	100	64.89	34.12	23.38	78.50	34.70	23.81	78.53	45.60	42.23
	500	64.89	34.12	23.38	78.50	34.70	23.81	78.53	45.60	42.23

Table 2: Effects of the size of feature map. Generally, the performance of our DIML is better with higher G. DIML with G = 4 yields good results within relatively low computational costs.

Baseline	G	CUB-200			Cars196			SOP		
		P@1	RP	M@R	P@1	RP	M@R	P@1	RP	M@R
Margin[16]	1	62.47	34.12	23.14	72.18	32.00	20.82	78.39	45.64	42.34
	2	64.15	34.79	23.83	75.04	32.59	21.85	79.06	46.29	43.03
	4	65.16	35.48	24.54	76.65	33.93	22.95	79.26	46.44	43.19
	7	65.58	35.58	24.79	76.96	32.93	22.66	79.59	46.83	43.62
Multi-Similarity [15]	1	62.56	32.74	21.99	74.81	32.72	21.60	77.90	44.97	41.54
	2	63.77	33.33	22.60	77.45	33.25	22.60	78.39	45.56	42.15
	4	64.89	34.12	23.38	78.50	34.70	23.81	78.53	45.60	42.23
	7	65.45	34.15	23.55	78.93	33.64	23.50	78.76	45.90	42.57

- [8] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh Singh. No fuss distance metric learning using proxies. In *ICCV*, pages 360–368, 2017. 2
- [9] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality check. In *ECCV*, pages 681–699. Springer, 2020. 2
- [10] Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta, Bjorn Ommer, and Joseph Paul Cohen. Revisiting training strategies and generalization performance in deep metric learning. In *ICML*, pages 8242–8252. PMLR, 2020. 2
- [11] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition and clustering. In *CVPR*, pages 815–823, 2015. 2
- [12] Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. *The American Mathematical Monthly*, 74(4):402–405, 1967. 1
- [13] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In *NeurIPS*, pages 1857–1865, 2016. 1
- [14] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In *CVPR*, pages 2818–2826, 2016. 2

- [15] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. Multi-similarity loss with general pair weighting for deep metric learning. In *CVPR*, pages 5022– 5030, 2019. 1, 3
- [16] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. Sampling matters in deep embedding learning. In *ICCV*, pages 2840–2848, 2017. 1, 2, 3