Transformer-based Dual Relation Graph for Multi-label Image Recognition

Supplementary Material

This Appendix provides detailed parametric studies and
explainable visualization of our proposed approach. Ap-
pendix A analyzes the effect of contextual information in
our motivation. Then we report the AP of each category on
MS-COCO dataset in Appendix B. Appendix C provides
detailed parametric studies of different modules. Lastly, we
provide more visualization results in Appendix D.

A. Explainable Structural Relation

We discuss the effects of structural relation in our moti-
vation, here we conduct detailed visualized results in Fig. 1
to articulate this point of view.

Challenge of semantic confusion. The ground-truth la-
bels of source image in Fig. 1 are {boat, person, snow-
board}, while our baseline model could not distinguish
skateboard and snowboard due to their similar appear-
ance. In addition, considering the co-occurrence of multi-
ple labels, {person, snowboard} and {person, skateboard}
are both high frequency collocations, which could not be
directly solved by conventional GCN-based methods afore-
mentioned in the main manuscript. These two unsolved
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problems lead to a burning challenge of semantic confu-
sions in multi-label recognition.

Contextual information for recognition. However, we
human being can easily recognize the object as a snow-
board rather than a skateboard, due to the context snow and
the interaction with person. Towards this ends, we intro-
duce Transformer architecture [5] to capture long-term con-
textual information and build position-wise relationships
between different objects to build structural relation. As
shown in Fig. 1, our structural relation graph module could
effectively capture the context snow and identify the object
as a snowboard with certainty. Especially, the response map
of snowboard shows a obvious structural relation between
snowboard and context snow and the response map boat
also shows a obvious structural relation between boat and
context water around.

Moreover, for individual objects such as person, our pro-
posed network has the potential to understand the high-
level information while focusing more on the compact re-
gions, while the baseline model introduces more noisy
backgrounds.
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Figure 1. A representative case of the proposed structural relation. Our structural relation graph module could capture long-term contextual
information and easily distinguish the objects with similar appearance, e.g., skateboard and snowboard.
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Figure 2. AP of each category of baseline model and our proposed approach on MS-COCO dataset. Our approach has significant improve-
ment on almost all categories, especially for small object categories, e.g., hair drier and scissors, which demonstrates the strong capacity

of our model in capturing small objects.

B. Comparison results on MS-COCO

As shown in Fig. 2, we exhibit the comparison chart
of AP performance of each category on MS-COCO. Our
proposed approach improves our baseline ResNet-101 from
78.6% to 84.6% (6.0% higher) in terms of mAP. It is ob-
vious that our approach has significant improvement on
almost all categories, especially for categories with small
scales, e.g., hair drier and toaster, which demonstrates
the strong capacity of our approach in capturing small ob-
jects. Meanwhile, our approach shows the potential in dis-
tinguishing objects with visually similar appearances, e.g.,
backpack and handbag.

C. Parametric Study
C.1. Weights of structural and semantic relation

As mentioned in Eq. (3) of the main manuscript, the
structural relation graph and the semantic relation graph are
weighted fused to obtain the final prediction. We apply a
weight coefficient « on structural relation graph module and
(1—«) on semantic relation graph module. As shown in Fig.
3, we set @ = 0.7 to achieve the best performance 84.6%
on MS-COCO and 95.0% on VOC 2007 dataset.

C.2. Hidden dimension of Transformer and GCN

The hidden dimension of Transformer and GCN are two
important factors in our experiments. We conduct detailed
parametric studies on different combinations of dimensions
on MS-COCO in Tab. 1. In experiments, we set Cp = 512
and C'¢ = 512 to achieve the best performance.
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Figure 3. The performance of the final prediction with different
weight coefficients o on MS-COCO and VOC 2007.

Table 1. Parametric study of the hidden dimension of Transformer
and GCN on MS-COCO.
Cr | 256 512 512 512 512 1024

Ce | 512 256 512 1024 2048 1024
mAP | 84.4 84.4 84.6 844 84.4 845

C.3. Multi-head Self-attention in Transformer

As two important factors in Transformer units, we con-
duct detailed parametric studies of the number of encoder
layers n and attention heads m in Tab. 2. It can be found
that more attention heads could lead to better performance.
However, more attention heads also introduce more compu-
tation cost, hence we set m as 4 rather than 8 as a trade-off
between performance and computation cost. Then we ex-
plore different numbers of encoder layers from 1 to 6 and



set n as 3 to obtain the best performance.

Table 2. Parametric study of the number of encoder layers n and
attention heads m on MS-COCO.
n 1 2 3 4 5 6 3 3 3

m |4 4 4 4 4 4 1 2 8
mMAP|84.4 84.4 84.6 84.4 84.4 84.5 84.5 84.5 84.6

C.4. Position Encoding

We introduce position encoding to retain the spatial
structure information following [!]. As shown in Tab. 3,
the result without positional information can be found in the
first row. By incorporating the absolute positional encoding
operation (sinusoid encoding function in [5]), the perfor-
mance of structural relation module slightly drops. In this
paper, we adopt relative positional encoding with learned
encoding parameters to encode the unique positional infor-
mation, which slightly improves the joint performance from
84.4% to 84.6%.

Table 3. Parametric study of position encoding manner on MS-
COCO.

Position Encoding | Rstructural  RJoint
None 83.8 84.4

Absolute Encoding 83.7 84.4

Relative Encoding 83.9 84.6

C.5. Numbers of GCN layers

We report the performance results with different num-
bers of GCN layers in our semantic relation graph module
in Tab. 4. We notice that the performance slightly drops
when the number of GCN layers increases. Hence we set
the number of GCN layers as 1 to obtain the best recogni-
tion performance.

Table 4. Parametric study of the number of GCN layers on MS-
COCO.

GCN layers | Rsemantic RJoint
1 83.7 84.6
2 83.5 84.5
3 83.4 84.5

C.6. Pooling operation of Semantic-aware Con-
straints

As mentioned in the main manuscript, we utilize the
top-k max-pooling with a threshold of 5% to squeeze the
high-response spatial information for semantic-aware con-
straints. We explore different global pooling operations on
MS-COCO in Tab. 5, it can be found that focusing on the
high-response area of each channel by top-k max-pooling

achieves better performance than focusing on the whole
area by global average-pooling or only one point by global
max-pooling. For top-k max-pooling, we explore different
thresholds in Tab. 5 and set the threshold as 5% to obtain
the best performance.

Table 5. Ablation study of different global pooling operations in
semantic-aware constraints on MS-COCQO dataset.

Pooli
OOMEI GAP GMP KMPyy, KMP; g5, KMPygs, KMPsgo;
Method

mAP |84.4 843 84.6 84.4 84.5 84.4

D. Visualization Results

In this section, we visualize the Class Activation Maps
by Grad-CAM [4] on two popular datasets, i.e. MS-COCO
[3] and VOC 2007 [2] dataset.

D.1. VOC 2007 dataset

VOC 2007 is a ’easier’ dataset compared to MS-COCO.
We provide the visualization results on VOC 2007 in Fig. 4.
It can be found that our structural relation could obtain more
accurate localization and higher confidence with global con-
textual information, e.g. bortle in Fig. 4 a) and {pottedplant,
sofa} in Fig. 4 b).
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Figure 4. Visualization analyses of baseline and our proposed
structural relation graph module on VOC 2007. We present several
labels for demonstration.

D.2. MS-COCO dataset

MS-COCO is a challenging dataset for multi-label
recognition tasks due to several characteristics, e.g., small
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Figure 5. Visualization analyses of baseline and our proposed structural relation graph module on MS-COCO. We present several labels
for demonstration and the labels not presented in the image are highlighted in red.

objects and complex scene. It can be found in our main
manuscripts that our Transformer-based structural relation
module provides better results and localization than base-
line. More results can be found in Fig. 5, our structural
relation could not only figure out the small objects, e.g.
wine glass in Fig. 5 a) and toothbrush in Fig. 5 b), but also
distinguish the objects in complex scenes, e.g. {sink, mi-
crowave} in Fig. 5 ¢). Besides, our approach has strong ca-
pacity to distinguish the objects with similar appearance,
e.g., laptop and tv in Fig. 5 d).
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