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1. More Localization Results using Different Features
We provide results of our VSGN on two more types of features R2+1d [5] and TSP [1] for ActivityNet-v1.3 in Table

1. To generate both features, videos at frame rate 15 fps are used as input of the video representation networks. Non-
overlapped snippets of L = 16 frames are extracted from each video, such that each snippet covers a temporal receptive field
of approximately one second. We only use RGB streams for both features. It is worth-mentioning that TSP is trained with
temporal action localization (TAL) annotations and on the TAL dataset, so our performance on TSP reflects its potential on
end-to-end training.

Table 1: Action localization results on validation set of ActivityNet-v1.3 with different features.

Features Stream Snippets per sec. 0.5 0.75 0.95 Avg. Short
R2+1d [5] RGB 1 51.89 35.87 8.56 34.82 19.6
TSP [1] RGB 1 53.26 36.76 8.12 35.94 20.9

2. More Ablation Results
In the Video self-stitching (VSS) component, we generate two different types of clips: Clip O and Clip U, and stitch them

into one sequence as input to xGPN. In order to verify the effectiveness of using both clips, we provide ablation study to show
the performance of only using either of them in Table 2. When only using Clip O or Clip U, we fill zeros in the positions of
the other clip in the sequence. We can see that using both clips obviously outperforms using only one type of clip, in terms
of both overall performance and performance of short actions.

Table 2: Effectiveness of Clip O and Clip U in VSS.

THUMOS-14 ActivityNet-v1.3
xGPN input 0.3 0.5 0.7 Short 0.5 0.75 0.95 Avg. Short

Clip O 62.31 44.47 20.31 48.1 52.00 35.29 8.22 34.44 19.7
Clip U 66.37 49.25 23.70 53.0 52.06 35.44 9.20 34.72 18.0

Clip O & U 66.69 52.45 30.40 56.6 52.38 36.01 8.37 35.07 19.9

In the cross-scale graph network (xGN), we use two branches: the temporal branch and the graph branch, and sum up
the features of the two branches as output. In Table 3, we compare the results of using either branch and using both. We
can see that using both branches obviously outperforms using only one branch, in terms of both overall performance and
performance of short actions.

3. Performance at Different Temporal Scales
We illustrate the performance of VSGN on actions of different temporal scales in Fig. 1, where we evaluate the accumu-

lated mAP of actions at different temporal scales. The accumulated mAP considers the number of action instances Mi and the
average-mAPN [2] within each action-duration group, which is formulated as mAPacc =

1∑5
i=1 Mi

∑5
i=1 average-mAPN,iMi.

It signifies the contribution of different action duration to the overall performance. We can see that for all the methods the



Table 3: Effectiveness of Temporal Branch and Graph Branch in xGN.

THUMOS-14 ActivityNet-v1.3
xGN branch 0.3 0.5 0.7 Short 0.5 0.75 0.95 Avg. Short

Temporal 63.77 50.24 28.36 53.4 50.87 33.99 9.09 33.79 19.7
Graph 66.62 51.51 27.33 55.0 51.54 35.07 8.04 34.09 19.4

Temporal & Graph 66.69 52.45 30.40 56.6 52.38 36.01 8.37 35.07 19.9

shortest actions contribute the most to TAL performance. Our VSGN obviously outperforms the other methods at the shortest
duration group while maintaining high ranks at longer ones.

a) THUMOS-14 b) ActivityNet-v1.3

Figure 1: Performance at different temporal scales in terms of accumulated mAP. For ActivityNet, We divide actions into 5 groups
based on their duration in seconds: XS (0, 30], S (30, 60], M (60, 120], L (120, 180], and XL (180, inf) . For THUMOS, considering
most of its actions fall into the shortest group based on the division above, we further explore the short actions by considering even finer
division: XS (0, 3], S (3, 6], M (6, 12], L (12, 18], and XL (18, inf). These curves are obtained by DETAD analysis [2] on the detection
results of each method. Our VSGN obviously outperforms the other methods at the shortest duration while maintaining a high rank for
longer.

We also summarize mAP values at different action scales in Table 4 for clearer comparison. Our VSGN performs the best
at the shortest scales, which have most instances, and reaches competitive scores for long ones.

Table 4: Performance at different temporal scales in terms of average mAPN .

THUMOS-14 (mAP@scale) ActivityNet-v1.3 (mAP@scale)
Scales (sec) 0-3 3-6 6-12 12-18 18-inf 0-30 30-60 60-120 120-180 180-inf
Instances (%) 48.4 25.3 21.7 3.4 1.1 54.4 16.3 15.9 9.4 3.9
SSN [9] 26.0 32.7 42.0 34.6 31.0 - - - - -
R-C3D [6] 18.9 37.3 39.4 21.3 9.4 - - - - -
BSN [4] - - - - - 15.0 35.4 45.9 62.3 69.5
BMN [3] - - - - - 15.2 37.1 47.4 62.4 69.4
G-TAD [7] 40.0 50.7 50.4 26.2 6.6 17.5 43.7 54.5 67.9 72.2
I.C&I.C [8] 30.9 61.3 57.8 46.4 27.5 14.8 37.3 46.6 61.4 66.9
VSGN (Ours) 46.8 55.6 47.3 49.5 25.4 19.9 41.7 53.0 66.9 68.4

4. Visualization of Localization Results
In Fig. 2, we visualize some examples of our localization results. In Fig. 3, we show the predicted actions compared to the

ground-truth ones in an absolute time scale. We can see that our VSGN can accurately localize very short action instances as
well as long ones, even when there are multiple consecutive instances in one video.

We also demonstrate cases where VSGN cannot generate precise boundaries. This also happens with other methods, when
the model mistakes multiple consecutive short actions as one long action or the background is similar to the actions. These
cases need further exploration for future work.



Figure 2: Visualization of VSGN prediction results.

Figure 3: Example localization results of different video duration and action duration. In each sub-figure, the x-axis shows the time
in seconds (the total input length of 1280 frames is 256.0 seconds in terms of temporal duration); the y-axis measures the confidence score.
The blue curve areas are the original video; the red curves show the ground-truth actions, which have confidence scores 1.0 within their
boundaries; the green segments are our predicted actions with their start/end time, confidence scores, and predicted labels. In the top two
rows, we show the cases when our VSGN can successfully detect the actions with accurate boundaries, including very short actions such
as those in the second row. In the third row, we also show the cases where VSGN fails to localize the actions.
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