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In this supplementary material, we provide the following
items:

• Comprehensive visualizations of spatial and temporal
attention maps.

• Frame-wise comparison to track the average MPJPE of
all the joints across frames.

• More qualitative comparison of estimated 3D poses.

• Estimated 3D poses using the proposed PoseFormer on
the in-the-wild videos collected from YouTube.

We also include a demo video to showcase the 3D human
pose estimation results of our proposed PoseFormer.

1. Attention Visualization
We present more visualization examples of spatial at-

tention maps and temporal attention maps for all 8 heads
when evaluating our PoseFormer model on Human3.6M
test set S11 with the SittingDown action. For the spatial
self-attention maps in Fig. 1, the x-axis corresponds to the
query of 17 joints and the y-axis indicates the attention out-
put. The attention heads return different attention intensities
which represent the various local relations learned among
the input joints. For the temporal self-attention maps in Fig.
2, the x-axis corresponds to the query of 81 frames and the
y-axis indicates the attention output. Long term global de-
pendencies are captured by different attention heads. The
spatial and temporal attention maps have demonstrated that
PoseFormer successfully encodes the local relationship be-
tween 2D joints as well as models global dependencies
cross the arbitrary frames regardless of the distance.

2. Frame-wise Analysis
We perform frame-wise estimation analysis by comput-

ing the average MPJPE of all estimated joints in each frame.

As shown in Fig. 3, we measure the frame-wise MPJPE
through Human3.6M [3] test set S11 with Eating and Photo
actions. Our PoseFormer (red line) yields lower MPJPE
in most frames of both actions, compared with our base-
line (temporal transformer only) and the state-of-the-art
method [1].

3. More Qualitative Results
We provide more visual comparison between the 3D es-

timated pose and the ground truth. We evaluate PoseFormer
on the Human3.6M test set S11 with the Greeting and Walk-
Dog actions. Compared with the state-of-the-art method [1]
and our baseline, PoseFormer achieves more accurate esti-
mations as shown in Fig. 4.

4. Performance on Videos in-the-wild
Our model was trained on the indoor dataset: Hu-

man3.6M that the background is static and the camera cap-
ture setting is known. Estimating 3D human pose from in-
the-wild videos is more challenging due to the dynamic en-
vironment and unknown camera setting. There are often
high variations in foreground/background objects appear-
ances and severe occlusions in unconstrained environment.
We also evaluate the performance of our PoseFormer on
some online videos from YouTube as shown in Fig. 5. We
first use AlphaPose [2] as 2D pose detector to generate 2D
poses from the video frames, then apply PoseFormer for 3D
pose estimation. We observe that PoseFormer achieves ac-
ceptable performance in most of the frames, but there are
still some failure cases (see Fig. 5) due to inaccurate 2D
pose detection, occlusion, and fast motion. Since Pose-
Former is a 2D-to-3D lifting approach, any incorrect de-
tected 2D poses may lead to inaccurate 3D pose estimation.
Occlusion is a key challenge remains in 3D HPE since the
information is missing. Moreover, estimation from the ex-
treme fast motion may be affected by the motion blurring of
several frames.
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Figure 1. Visualization of self-attentions in the spatial transformer. The x-axis (horizontal) and y-axis (vertical) correspond to the queries
and the predicted outputs, respectively. The pixel wi,j (i: row, j: column) denotes the attention weight of the j-th query for the i-th output.
Red indicates stronger attention. The attention output is normalized from 0 to 1.
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Figure 2. Visualization of self-attentions in temporal transformer. The x-axis (horizontal) and y-axis (vertical) correspond to the queries
and the predicted outputs, respectively. The pixel wi,j (i: row, j: column) denotes the attention weight of the j-th query for the i-th output.
Red indicates stronger attention. The attention output is normalized from 0 to 1.
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Figure 3. Frame-wise comparison between our method (PoseFormer), our baseline, and the SOTA approach Chen et al. [1] on Human3.6M
test set. Top-figure: S11 with the Eating action. Bottom-figure: S11 with the Photo action.
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Figure 4. Qualitative comparison between our method (PoseFormer), our baseline, and the SOTA approach Chen et al. [1] on Human3.6M
test set S11 with the Greeting and WalkDog actions. The green arrows highlight locations where PoseFormer clearly has better results.
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Figure 5. Qualitative results on in-the-wild videos: original frame sequence with detected 2D joints and the recovered 3D poses using
PoseFormer.


