
Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds
Supplementary Material

1. Overview
In this supplementary material, we provide more analy-

sis experiments in Section 2. Then we describe the archi-
tecture of BAT-Vanilla in Section 3.

2. More Analysis Experiments
Other BoxCloud Design. Our BoxCloud depicts the point-
to-box relation using Euclidean distance. An alternative
design is replacing the Euclidean distance with the point-
to-point offset. We denote BoxCloud in this form as

◦
B ∈

RN×27, where each row of B̂ is a concatenation of 9 three-
dimensional offsets. Compared to our original design,

◦
B is

three times larger but contains almost the same amount of
information as ours. As shown in Table 1, using

◦
C incurs

a performance decline, which implies that the extra dimen-
sion of

◦
C puts a burden on the training of the network. In

contrast, the proposed BoxCloud is more compact and ef-
fective.

Table 1. Ablation on BoxCloud Designs.

BoxCloud Designs Success Precision
◦
C (offset) 58.8 75.3
C (original) 60.5 77.7

Performance on Long/Short Term Tracking. We further
follow different schemas to generate search areas. 1) To
test the long-term tracking performance, we generate all
the search areas based on previous results predicted by the
models. In this setup, the trackers’ ability to handle error
accumulation and recover from failure is assessed. 2) For
short-term performance evaluation, we use the ground-truth
location of the target in the previous frame to generate the
next search area. In this case, the tracker does not have to
handle the error introduced by its last prediction and only
need to focus on the “on time tracking” task.

The results of the car category for all the competitors
are shown in Table 2. Overall, our BAT outperforms P2B
and SC3D in both setups. In particular, BAT shows more
notable superiority in long term setup. This implies that the
performance of our method is more stable and robust across

Table 2. Comparison on long/short term tracking performance
for car. The right two columns differ in their ways to generate
search area. Bold denotes the best performance.

Method Long Term Short Term

Success
SC3D [1] 41.3 64.6
P2B [2] 56.2 82.4

BAT(Ours) 60.5 83.5

Precision
SC3D [1] 57.9 74.5
P2B [2] 72.8 90.1

BAT(Ours) 77.7 90.5

time, while the other two methods are more likely to suffer
from tracking failure. In the realistic tracking scenario, it is
impossible to obtain the “previous ground-truth”. Hence, it
is more proper to use long-term performance to evaluate a
practical tracking system.

Table 3. Different ways for template generation. Methods are
compared on the Car category. “First & Previous” denotes “The
first GT and Previous result”. Bold denotes the best performance,
and underline shows our default setting.

Source of template
Success Precision

BAT P2B SC3D BAT P2B SC3D
The First GT 51.8 46.7 31.6 65.5 59.7 44.4
Previous result 59.2 53.1 25.7 75.6 68.9 35.1
First & Previous 60.5 56.2 34.9 77.7 72.8 49.8
All previous results 55.8 51.4 41.3 71.4 66.8 57.9

Template Generation Strategy. During the testing, our de-
fault setting for template generation is to merge the target in
the first frame (the ground truth) with the previous result
predicted by the network. For consistent comparison, we
further test our method under another three template gen-
eration strategies, which uses “the first ground-truth”, “the
previous result”, and “all previous results” respectively to
generate the template. The results are listed in Table 3. BAT
maintains notable advantages regardless of any strategies. It
is worth mentioning that our BAT defeats P2B by the largest
margin (∼7%) under the “previous result” strategy. This

1



(a) (b) (c) (d)

0~0.05 >0.080.05~0.08

Figure 1. Visualization of BoxCloud predictions. 4 car cases with different sparsity are presented. Points are colored according to
its corresponding BoxCloud predictions MSE errors. The greens are points with MSE errors less than 0.05; The blues are points with
MSE errors in the range between 0.05 and 0.08; while the reds denotes points with MSE errors higher than 0.08. It is obvious that most
predictions are with small MSE errors.

also shows that our long-term performance is much better
and robust than that of P2B.

Table 4. Comparison with MOT methods on KITTI dataset.

Class Method AB3D [3] PC3T [4] BAT
Car Succ/Prec 37.5 / 42.3 51.9 / 59.2 60.5 / 77.7
Ped. Succ/Prec 17.6 / 27.3 23.6 / 34.1 42.1 / 70.1

Comparison with MOT Approaches. To illustrate the su-
periority of single object tracking (SOT) upon 3D multi-
object tracking (MOT) methods, we evaluate 3D MOT
methods with 3D SOT metrics. Since multiple objects need
to be tracked in 3D MOT, we first find out the corresponding
relation between the multiple objects with the single one.
Specifically, for each object in SOT, we search its nearest
neighbor in all objects of MOT. Hence, each MOT task can
be transferred into several SOT tasks, and the metrics of
SOT can play a normal role. For each object in MOT, if its
tracked identity is changed in a specific frame (the tracker
infer the error relation), we will stop the further tracking.

We compare the two most representative methods in 3D
MOT, AB3DMOT [3] and PC3T [4], where they rank 25
and 4 in the KITTI MOT leaderboard in the car category,
respectively. As shown in Table 4, BAT significantly per-
forms better than state-of-the-art 3D MOT methods. Since
multiple objects need to be tracked, they cannot use target-
specific feature augmentation to enhance the template rep-
resentation. Moreover, since they use detection to obtain
all objects in the scene, their speed is much slower than
ours, where both two MOT methods cannot achieve real-
time speed.
Visualization of BoxCloud Learning. BAT is trained to
predict the BoxClouds of the points in search areas. In this
part, we compare the BoxClouds predicted by our trained

BAT with the ground-truths. We use the Mean Square Error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n 
Sq

ua
re

 E
rr

or
 

Threshold 

Distribution of MSEs for BoxCloud prediction. 

Figure 2. Distribution of MSEs for BoxCloud prediction.

(MSE) as the metric to evaluate the performance of Box-
Cloud learning. For each predicted BoxCloud point, we
calculate the MSE between the corresponding ground-truth
and the predicted BoxCloud point (only the target points are
considered). Figure 2 shows the distribution of MSEs of all
the predictions in our KIITI test split. Most of the MSEs
are less than 0.1, which implies a high accuracy of the Box-
Cloud prediction.

We further visualize several cases of BoxCloud predic-
tions in Figure 1. As shown in figures, our BAT can gen-
erally obtain accurate BoxCloud predictions. Some biases
may occur in the edges between objects and backgrounds.
This is because our training strategy only supervises the
BoxCloud of the object rather than the whole search area.
Nevertheless, such slight prediction biases have little impact
on our BoxCloud comparison and the following tracking
process, since they are filtered out by the k-NN grouping.



Template Box

BoxCloud 
Generation

PointNet++ Point-wise
similarity

BoxCloud
Prediction

tPTemplate

N� × 3

sPSearch Area

N� × 3

�� × 9

tF
�� × (3 + ��)

sF

�� × (3 + ��) �� × 9

�� × ��

Similarity map
Feature

Augmentation

�� × (3 + ��)

Search area seeds with 
target-specific feature

Box-Aware Feature Fusion

3D Box Prediction

Classifying

Voting

�� × 1

�� × (3 + ��)

Potential 
target centers

Seed-wise 
targetness score

Concatenation

�� × (1 + 3 + ��)

Clustering

Cluster of potential 
target centers

�� × (1 + 3 + ��)

�� × (1 + 3 + ��)

�� × (1 + 3 + ��)

⋮

⋮

��
�, ��

�

⋮

⋮
��

�, ��
�

��
�, ��

�

3D target
proposal

Proposal-wise 
targetness score

Verification
with ��

3D Target Proposal and Verification

Newly proposed
Origin in P2B

BoxCloud

Point features

��

��

Figure 3. The overall pipeline of vanilla Box-Aware Tracker (BAT-Vanilla). The left part is the box-aware feature fusion, which
augments the search area with template information. The right part is a VoteNet-based RPN which generates final target proposals from
the target-specific search area. For the i-th proposal, spi is its targetness score and pti is its (x, y, z, θ).

M� × M� × 1
Similarity map

M� × M� × (1 + 3 + �� + 9)

⋯
⋯

copy

3 +
� �

9

M�

M�

M�

M�

Tem
pla

te 
see

ds

M�

M�

MLP1 on
 Feature Channel

� �

M�

� �

M�

� �

Maxpool on
M1 Channel

MLP2 on
Feature Channel

Search Area Seeds with 
Target-Specific Features

M�

� �

3

M�

3

Search area
coordinatesM� × M� × ��

11

Box
 cl

ou
d

M� × 1 × �� M� × 1 × �� M� × 1 × (3 + ��)

Origin in P2B

Newly proposed

Figure 4. The detailed architecture of feature augmentation module in the vanilla Box-Aware Tracker (BAT-Vanilla). The BoxCloud
of the template is concatenated together with the corresponding coordinates and the extracted features.

3. Architecture of BAT-Vanilla

The Figure 3 illustrates the architecture of BAT-Vanilla,
which directly adds BoxCloud to P2B. After the feature ex-
traction using a shared backbone, a shared MLP (256,256,9)
(with layer output sizes 256, 256, 9) is applied to the ex-
tracted search area features F s for BoxCloud prediction. By
adding this branch, the F s is supervised to be box-aware.
During the feature augmentation stage, the BoxCloud of
the template is simply concatenated together with its co-
ordinates and the extracted features (as shown in Figure 4).
The feature augmentation in BAT-Vanilla is almost the same
with that in P2B, but introduces additional BoxCloud fea-
tures as priors.

The right part of Figure 3 illustrates the workflow of the
RPN, which is used in both BAT and BAT-Vanilla. A point-
wise MLP (256, 256, 3+256) is applied to the target-specific
search area features (only the sampled seed points) for ob-
ject center voting. The MLP takes the per-point feature as
input and outputs its offset to the corresponding object cen-
ter. Besides the coordinate offset (3D), the MLP also pre-
dicts a feature offset for each point. But only the coordinate
offsets are supervised with the ground-truths. In addition

to the voting MLP, another MLP (256, 256, 1) is used to
predict a targetness score for each search area seed.

After that, the predicted vote centers and targetness
scores are concatenated together and then clustered into
k groups through the furthest point sampling and the ball
query. Finally, a mini-PointNet is used to produce the final
target proposal of each group.

References
[1] Silvio Giancola, Jesus Zarzar, and Bernard Ghanem. Leverag-

ing shape completion for 3d siamese tracking. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 1359–1368, June 2019. 1

[2] Haozhe Qi, Chen Feng, Zhiguo Cao, Feng Zhao, and Yang
Xiao. P2b: Point-to-box network for 3d object tracking in
point clouds. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 6329–6338, 2020. 1

[3] Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani.
3D Multi-Object Tracking: A Baseline and New Evaluation
Metrics. IROS, 2020. 2

[4] Hai Wu, Wenkai Han, Chenglu Wen, Xin Li, and Cheng
Wang. 3d multi-object tracking in point clouds based on pre-
diction confidence-guided data association. IEEE Transac-
tions on Intelligent Transportation Systems, 2021. 2


