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Supplementary Material

1. Texture Inference

Our method can be easily extended to predict texture of
the reconstructed geometry models. Similar to PIFu [4],
we consider texture as a 3D RGB vector function defined
within a certain band near the surface points. In our imple-
mentation, we consider texture inference as the next level
of geometry fine level framework, and we feed geometry
embeddings concatenated with texture features to a MLP
layer:

FC(X) = gC(TC(ΦC
m(x, I),ΩH(X))) (1)

where the color level self-attention module TC merges the
multi-view color information from multi-vew image fea-
tures ΦC

m(x, I) concatenated with fine level 3D embeddings
ΩH , and gC predicts the RGB vector conditioned with the
meta feature extracted by TC .

2. Implementation Details

Loss Function For multi-view inputs, similar to PIFu [4],
the loss function of the geometry inference is designed as:

Lm =
1

N

N

Σ
i=0
|FT (X)− F ∗(X)|2 (2)

where N is the number of query points, FT denotes the
predicted occupancy probability and F ∗(X) ∈ {0, 1} is
the ground truth value where 0 represents the points inside
the surface while 1 for outside points. Different from PI-
FuHD [5], we use L2 loss instead of the Binary Cross En-
tropy (BCE) loss, since we find the BCE loss can lead to too
sharp results, which can be unstable under the real world
setting and even cause artifacts. For color inference, we
draw the same principle while the difference is that now
FT in Eqn. 2 predict a 3D RGB vector instead of a scalar,
and the F ∗ denotes the ground truth color value.

During training, we first train the coarse network. After
that, for memory efficiency, we fix the coarse level and train
the fine level. Similarly, the color network is trained with
the geometry network fixed.

Figure 1: Examples of rendered SMPL global normal maps,
whose three channels are the normal vector under SMPL
model coordinate system.

Network Architecture Our method builds on a coarse to
fine level attention-aware framework combined with SMPL
models. To merge geometry information from different ob-
servations, inspired by [6], we design two self-attention lay-
ers with nhead = 8 multi-head module and 256 embedding
size, where the first feature in the output sequence is used as
the meta feature representing the global spatial information.

In the coarse level, following PIFu [4], we design the im-
age encoder based on a 4 stack hourglass architecture [2],
which results in 256-D low resolution feature maps with
size of 128× 128. A 3D convolution network with two lay-
ers and three residual blocks is used to extract 3D semantic
features of 1283 volumetric representation of SMPL, where
the output features have 64 channels with size of 323. The
multi-view image features are concatenated with SMPL em-
beddings and fed to the self-attention module. Finally, a
multi-layer perceptron is trained to fit the implicit function,
which takes in the merged 320-D feature as well as the 3D
coordinate of the query points, and thus the number of neu-
rons is (323, 1024, 512, 256, 128, 1).

In the fine level, a pix2pixHD [7] network is used to pre-
dict frontal image normal maps as introduced in PIFuHD.
We further design the normal encoder by using 1 stack hour-
glass and removing the average pooling in the intermediate
layers to obtain a high resolution feature map with 512×512
size. The number of channels in the output normal features
is adjusted to 32 for memory efficiency. Therefore, the first
layer in the fine level MLP has 355 neurons with the 355-
D meta feature as input, which is merged by the fine level
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self-attention module. A highly detailed 3D human can be
finally reconstructed through the two level framework.

Experimental Setup To train the network, we col-
lect 1700 3D human models from Twindom1 and THu-
man2.0 [8]. 512 × 512 images and normal maps are ren-
dered through perspective cameras from every other degree
in yaw axis with random evaluation. The renderer is based
on taichi [1], which enables us to perform rendering on
headless machines equipped with GPUs.

Given the rendered images, we estimate 3D skeleton for
each subject through a 4D association algorithm proposed
in [9] and fit SMPL-X [3] with 25 pose keypoints, 70 face
keypoints and 21 hand keypoints. The normal of SMPL
surface under its canonical model coordinate system is cal-
culate to render global normal maps as introduced in the
main paper. Figure 1 provide examples of the global nor-
mal maps.

In order to train the network to handle occlusions in
real world scenes, we further argument the training data by
masking out random regions with various shapes and edges.
The contours of blocked parts are formed by adding basic
geometric figures including cube, spheroid with corrupted
edges. To simulate multi-person scenes, we project other
persons to the masks, where non-occlusion to heavy oc-
clusion scenes can be generated. Figure 2 shows examples
from our training dataset.

Besides, to help the network aware of visible details and
leverage SMPL information for robust reconstruction, we
use a sampling method based on the visiblity of points. The
input points during training are sampled from Gaussian dis-
tribution centered by surface points with standard deviation
σ as introduced in [4]. We further choose a small standard
deviation σ0 for visible points to guide the network to learn
fine-grained geometry details, while a larger σ1 for invisi-
ble points to avoid unreasonable predictions, which we find
contributes to the improvement of performance under oc-
cluded scenes. In practice, we set σ0 as 0.02 and σ1 as
0.005.

In spirit of maintaining the same setup for training
and inference, during reconstruction, we firstly normalize
SMPL to a unit cube, and transform the query points to the
SMPL model coordinate system to predict the occupancy
field. The strategy ensures the consistency between train-
ing and testing, preventing the instability of reconstruction
brought by the significant difference among real world co-
ordinate space and training virtual environment.

3. MultiHuman Dataset
As introduced in the main paper, to better evaluate multi-

person performance capture systems like ours, we collect

1https://web.twindom.com/

Figure 2: Data argumentation by adding basic geometric
figures with corrupted edges (a), and other persons to simu-
late multi-person scenes (b) and (c).

a high resolution 3D human model dataset, MultiHuman,
which contains 150 multi-person interacting scenes (includ-
ing both natural and close interactions). In each scene, the
number of person is within the range from 1 to 3, where
each consists of about 300,000 triangles with photo-realistic
texture. According to the level of occlusions and elements
of interactions in the scenes, we divide the dataset into sev-
eral categories for a detailed evaluation, i.e., single person
scenes, occluded single person scenes, two natural interac-
tive person scenes, two close interactive person scenes, and
three person scenes. Figure 4 offers more examples of our
dataset. To fill in the blank of available multi-person dataset
of the community, we will make the dataset public, which
will surely benefit the development of future algorithms.

Figure 3: Texture reconstruction on real world videos. Our
method is able to reconstruct multi-perosn texture from
multi-view images. More results will be shown in our sup-
plemental video.

4. Additional Results
Ablation Study Our method achieves the state-of-the-art
performance by leveraging a spatial attention module to
merge multi-view features and utilizing human pose and
shape prior SMPL to compensate for the missing informa-
tion due to occlusions in multi-person scenes. We further
design a SMPL global normal map to help the attention
module to identify the view orientation and better capture
the details, which is similar to the position encoding method
introduced in [6]. In the main paper we evaluate how the at-
tention module and the SMPL information effect the quan-



Figure 4: Examples of MultiHuman dataset. Our dataset consists of high quality 3D human models with photo-realistic
texture. According to the occlusion level and number of persons in the scene, we divide the dataset into 5 categories,
including single person scenes, occluded single person scenes (by various objects), two natural interactive single person
scenes, two close interactive person scenes, and three person scenes (from top to bottom).



Figure 5: Qualitative results of ablation study on MultiHuman dataset. We evaluate the performance of (e) our method and
the alternative approaches including (b) ours without SMPL (which is equal to PIFuHD [5] combined with the attention
module), (c) ours without the attention module and (d) ours without the designed SMPL global normal maps.

titative accuracy of prediction. Figure 5 offers qualitative
examples to illustrate how our method benefits from the de-
sign. Without SMPL information (Ours w/o SMPL), re-
construction results can be fragmental due to occlusions in
multi-person scenes. SMPL serves as a 3D proxy to help
the network generate robust results. However, without the
self-attention module to effectively merge information from
multi-view observations, the approach can lead to artifacts
when reconstructing multi-person, which is clearly demon-

strated in the three person scene in Figure 5. Besides, our
method without the guidance of SMPL global normal maps
(Ours w/o SN) will have less detailed results, indicating that
the SMPL normal maps further help the attention module
to capture fine grained geometry features and reconstruct
high-fidelity 3D humans.

Texture Inference We provide examples of the texture
reconstruction results on real world scenarios in Figure 3.



Our method is able to reconstruct vivid multi-human tex-
ture from multi-view scenes.

For more results, please refer to our supplementary video.
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