
Deep Relational Metric Learning
Supplementary Material

Wenzhao Zheng∗, Borui Zhang∗, Jiwen Lu†, Jie Zhou
Department of Automation, Tsinghua University, China

Beijing National Research Center for Information Science and Technology, China
{zhengwz18, zhang-br21}@mails.tsinghua.edu.cn; {lujiwen, jzhou}@tsinghua.edu.cn

A. Results using the evaluation protocol [8]
Though we followed the standard evaluation proto-

col [12, 13, 22] and used a constrained experimental set-
ting for fair comparisons with existing deep metric learn-
ing methods, the conclusions can still be questioned due to
the lack of a validation set and the uninformative evaluation
metric [8]. To improve the credibility of our experimental
evaluation, we additionally performed experiments on the
CUB-200-2011 [15] and Cars196 [6] dataset by strictly fol-
lowing the new evaluation protocol [8].

Specifically, we employed a BN-Inception [4] network
pretrained on ImageNet [10] as the trunk model. We set the
dimension of the final embedding to 128 and use a batch
size of 32 for training. To prevent direct test set feedback,
we performed a 4-fold cross-validation on the training sub-
set to search for the hyperparameters. We used the first half
of the classes as the training subset and the rest as the test
subset, and then evenly split the training subset into four
partitions based on the number of classes. During each val-
idation, we employed one of the four partitions for training
the rest for evaluation. We used the average accuracy on the
four validation sets as feedback to tune the hyperparame-
ters.

For testing, we reported the performance in separated
and concatenated setting. For the separated setting, we di-
rectly computed the performance of the four 128-dim em-
beddings obtained using the model trained in each fold and
reported the average results. For the concatenated setting,
we concatenated the four aforementioned embedding for
each sample to obtain a 512-dim embeddings for evaluation.
We employed the Precision@1 (R/P@1), the R-Precision
(RP), and the Mean Average Precision at R (MAP@R) as
the evaluation metric. We direct interesting readers to the
original paper [8] for more details.

Table 1 and 2 shows the results of the baseline methods
and the proposed DRML framework on the CUB-200-2011
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and Cars196 dataset, respectively. We use red numbers to
denote the best results and blue numbers to denote the sec-
ond best results. We applied our framework to the triplet
loss [18], the ProxyAnchor loss [5], and Cosface [16]. We
see that our DRML framework still consistently boosts the
performance of existing methods and further achieves the
state-of-the-art result under the new evaluation protocol,
which verifies the effectiveness of the proposed relation-
aware embedding.

B. Performance on large-scale datasets

We further conducted experiments on the ImageNet
dataset [10] to evaluate the generalization of the proposed
method to large-scale datasets. Table 3 shows the results of
our DRML framework applied existing deep metric learn-
ing methods. As the original papers did not reported the per-
formance on the ImageNet dataset, the results in Table 3 are
based on our reproduction1. We observe that the ProxyAn-
chor loss with random sampling (PA) [5] is the best base-
line method. The triplet loss with semi-hard sampling (i.e.,
TSH) [11] achieves better results than the softmax base-
line while the margin loss with distance-weighted sampling
(MDW) [19] achieves worse results, though MDW con-
sistently outperforms TSH on small-scale datasets like the
CUB-200-2011 and Cars196 datasets. We can see this trend
on the middle-scale Stanford Online Products [13] dataset
as the two methods achieve comparable performance. De-
spite the changing ranking of performance on datasets of
different scales, our DRML framework can uniformly im-
prove the performance of various methods, which shows
that the effectiveness of our framework generalizes well to
the benchmark scale.

C. Visualization of the embedding space

Figure 1 shows the qualitative result of the proposed
DRML-MDW on the CUB-200-2011 dataset. We em-

1Code: https://github.com/zbr17/DRML

https://github.com/zbr17/DRML


Table 1. Results using the new protocol on the CUB-200-2011 dataset.

Method Concatenated (512-dim) Separated (128-dim)

R/P@1 RP MAP@R R/P@1 RP MAP@R

Pretrained 51.1 24.9 14.2 50.5 25.1 14.5
Contrastive [3] 67.2 ± 0.5 36.9 ± 0.3 26.2 ± 0.3 58.6 ± 0.5 31.5 ± 0.2 20.7 ± 0.2
ProxyNCA [7] 66.1 ± 0.3 35.5 ± 0.2 24.6 ± 0.2 58.3 ± 0.3 30.6 ± 0.1 19.7 ± 0.1
Margin [19] 65.5 ± 0.5 35.0 ± 0.2 24.1 ± 0.3 56.2 ± 0.4 29.5 ± 0.2 18.6 ± 0.2
N. Softmax [21] 65.4 ± 0.2 36.0 ± 0.2 25.2 ± 0.2 58.5 ± 0.2 31.7 ± 0.2 20.9 ± 0.2
ArcFace [2] 67.1 ± 0.3 37.2 ± 0.2 26.4 ± 0.2 60.1 ± 0.2 32.3 ± 0.1 21.4 ± 0.1
FastAP [1] 63.6 ± 0.2 34.5 ± 0.2 23.7 ± 0.2 55.9 ± 0.3 29.8 ± 0.2 19.1 ± 0.2
SNR [20] 67.3 ± 0.5 36.9 ± 0.2 26.1 ± 0.2 58.8 ± 0.3 31.6 ± 0.2 20.8 ± 0.2
MS [17] 66.0 ± 0.2 35.9 ± 0.1 25.2 ± 0.1 58.5 ± 0.2 31.4 ± 0.1 20.6 ± 0.1
MS+Miner [17] 65.8 ± 0.3 36.0 ± 0.2 25.2 ± 0.2 58.2 ± 0.2 31.3 ± 0.2 20.5 ± 0.2
SoftTriple [9] 66.2 ± 0.4 36.5 ± 0.2 25.6 ± 0.2 59.6 ± 0.4 32.1 ± 0.2 21.3 ± 0.2

Triplet [18] 64.4 ± 0.4 34.6 ± 0.4 23.8 ± 0.4 56.0 ± 0.3 29.6 ± 0.3 18.8 ± 0.3
DRML-Triplet 64.2 ± 0.5 34.8 ± 0.4 24.1 ± 0.3 56.3 ± 0.4 30.0 ± 0.5 19.3 ± 0.4

ProxyAnchor [5] 65.2 ± 0.2 36.0 ± 0.2 25.3 ± 0.1 56.6 ± 0.1 30.5 ± 0.1 19.8 ± 0.2
DRML-PA 66.5 ± 0.1 36.8 ± 0.2 26.0 ± 0.2 59.5 ± 0.2 32.0 ± 0.3 21.2 ± 0.2

Cosface [16] 67.2 ± 0.4 37.4 ± 0.2 26.5 ± 0.2 59.8 ± 0.3 32.1 ± 0.2 21.6 ± 0.2
DRML-Cosface 69.2 ± 0.3 37.8 ± 0.2 27.2 ± 0.2 60.2 ± 0.3 33.0 ± 0.2 22.3 ± 0.3

Table 2. Results using the new protocol on the Cars196 dataset.

Method Concatenated (512-dim) Separated (128-dim)

R/P@1 RP MAP@R R/P@1 RP MAP@R

Pretrained 46.9 13.8 5.9 43.3 13.4 5.6
Contrastive [3] 81.6 ± 0.4 35.7 ± 0.4 25.5 ± 0.4 69.4 ± 0.2 28.2 ± 0.2 17.6 ± 0.2
ProxyNCA [7] 83.3 ± 0.4 36.6 ± 0.3 26.4 ± 0.4 70.9 ± 0.6 28.6 ± 0.3 18.0 ± 0.3
Margin [19] 82.1 ± 2.4 34.7 ± 2.2 24.1 ± 2.3 71.0 ± 2.7 27.6 ± 1.5 16.8 ± 1.5
N. Softmax [21] 83.6 ± 0.3 36.6 ± 0.2 26.4 ± 0.2 72.9 ± 0.2 29.6 ± 0.1 18.9 ± 0.1
ArcFace [2] 84.0 ± 0.2 35.4 ± 0.3 25.2 ± 0.3 73.7 ± 0.4 28.6 ± 0.1 18.1 ± 0.1
FastAP [1] 78.2 ± 0.7 33.4 ± 0.7 22.9 ± 0.7 64.7 ± 0.6 26.4 ± 0.4 15.8 ± 0.4
SNR [20] 81.9 ± 0.4 35.4 ± 0.4 25.1 ± 0.5 70.2 ± 0.4 27.9 ± 0.4 17.4 ± 0.3
MS [17] 85.3 ± 0.3 38.0 ± 0.6 27.8 ± 0.8 73.7 ± 1.0 29.4 ± 0.6 18.8 ± 0.7
MS+Miner [17] 84.6 ± 0.3 37.7 ± 0.4 27.6 ± 0.4 72.9 ± 0.3 29.5 ± 0.4 18.9 ± 0.4
SoftTriple [9] 83.7 ± 0.2 36.3 ± 0.2 26.1 ± 0.2 73.0 ± 0.2 29.4 ± 0.1 18.7 ± 0.1

Triplet [18] 77.5 ± 0.6 32.9 ± 0.5 22.1 ± 0.5 63.9 ± 0.4 26.1 ± 0.3 15.2 ± 0.3
DRML-Triplet 78.8 ± 0.3 33.2 ± 0.4 22.8 ± 0.5 64.0 ± 0.2 26.2 ± 0.3 15.5 ± 0.1

ProxyAnchor [5] 83.3 ± 0.4 35.7 ± 0.3 25.7 ± 0.4 73.7 ± 0.4 29.4 ± 0.3 18.9 ± 0.2
DRML-PA 85.7 ± 0.5 36.0 ± 0.2 26.1 ± 0.2 76.6 ± 0.4 29.8 ± 0.3 19.3 ± 0.2

Cosface [16] 85.3 ± 0.2 36.7 ± 0.2 26.9 ± 0.2 74.1 ± 0.2 28.5 ± 0.1 18.2 ± 0.1
DRML-Cosface 86.4 ± 0.3 38.7 ± 0.4 29.2 ± 0.3 75.7 ± 0.3 30.2 ± 0.2 20.0 ± 0.1

ployed the Barnes-Hut t-SNE [14] algorithm to visualize
the learned embedding space and magnify specific regions
for clear demonstration. We color the boundary of each
image using different colors to represent the ground truth
class label. We observe that even though the classes in the
test subset are not seen during training, our method can still

accurately measure their semantic differences. Moreover,
the images in the CUB-200-2011 dataset possess small in-
terclass differences and large intraclass variations, yet our
framework still effectively clusters together instances from
the same class using the learned relation-aware embeddings
despite all these difficulties.



Table 3. Experimental results on the ImageNet dataset.

Method R/P@1 R@2 P@2 RP MAP@R NMI

Softmax Baseline 53.7 63.8 50.9 25.5 33.9 71.8

Margin-DW [19] 46.3 56.5 45.5 23.7 33.1 74.6
DRML-MDW 48.9 59.2 48.3 25.1 34.4 75.4

Triplet-SH* [11] 54.9 64.5 55.2 32.0 41.3 78.3
DRML-TSH 55.8 65.3 55.3 32.3 41.5 78.6

ProxyAnchor [5] 66.4 74.1 66.4 44.2 52.2 82.2
DRML-PA 68.0 75.0 67.6 46.3 53.9 82.9

Figure 1. Qualitative result of the proposed DRML-MDW method on the test subset of the CUB-200-2011 dataset, where we magnify
specific regions for clear demonstration. (Best viewed on a monitor when zoomed in.)
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