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In-Place Scene Labelling and Understanding with Implicit Scene Representation

Figure 1: Semantic 3D reconstruction obtained using Semantic-NeRF. Note that our learned scene-specific 3D representation
predicts decent geometry and semantics in occluded regions and fills the holes caused by unobserved regions to some extent.
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Table 1: Definitions of depth metrics: n is the number of
valid depth pixels, d and dgt are rendered depths at testing
poses and ground truth depths, respectively.

A. Effects of Learning Semantics to Radiance
and Geometry

Corresponding to Section 4.2 of the main paper, Table
2 shows quantitative results for photometric and geomet-
ric reconstruction quality when projected to 2D on Replica
scenes with and without semantics enabled. We observe no
obvious difference between these two set-ups. Peak signal-
to-noise ratio (PSNR) is used to measure the quality of the
rendered colour images and the metrics used to evaluate the
2D depth maps are shown in Table 1.

B. Semantic 3D Reconstruction from Posed
Images

After training semantic-NeRF with in-place annotation,
we can also extract an explicit 3D scene from the learned
MLP to inspect the implicit 3D representation. Geometric

meshes are extracted by first querying the MLP on dense 3D
grids of the scene and then applying marching cubes. At-
tached semantic texture is rendered by treating the negative
normal direction of vertices in the mesh as the ray marching
directions during volume rendering. We show qualitative
results for three Replica room scenes in Figure 1.

C. Network Architecture
Axis-aligned positional encoding (PE) of 3D positions

are fed to both first and intermediate fully-connected (FC)
layers with 256 neurons and ReLU activations before pre-
dicting volume density. Additional FC layers with 128
neurons are used for view-invariant semantics and view-
dependent radiance after merging input viewing directions.

The length of positional encoding L relates to the maxi-
mum frequency used and affects the rendering quality. In la-
bel propagation task, we find that using only low-frequency
components (L = 5) leads to over-smoothed 2D renderings,
while using high-frequency ones (L = 40) leads to noisy in-
terpolations, which aligns with findings in recent literature
[16, 30]. L of 10 empirically performs the best.

D. More Qualitative Results
Here we show more examples of qualitative results in

Figure 2, 3, 4 for semantic view synthesis, label denoising
and super-resolution, respectively.

We kindly urge readers to watch our supplementary
video on project page https://shuaifengzhi.com/
Semantic-NeRF/ which highlights the accuracy and
consistency of semantic renderings in various situations and
applications.
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Figure 2: View-synthesis results.



Network Set-up Depth RGB

AbsRel↓ AbsDiff↓ SqRel↓ RMSE↓ δ < 1.25↑ δ < (1.25)2↑ δ < (1.25)3↑ PSNR↑

W/ Semantics 0.017 0.032 0.007 0.096 0.993 0.997 0.998 32.27

W/O Semantics 0.018 0.032 0.009 0.102 0.993 0.996 0.998 32.80

Table 2: Quantitative evaluation of effects of predicting semantics on appearance and geometry on Replica dataset.

Figure 3: Pixel-wise denoising of semantic labels with 90% noise ratio.



(a) Super-resolution using coarse label (b) Super-resolution using sparse label

Figure 4: Label super-resolution (×8) results.


