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A. Evaluation on multiple views

The goal of MGSampler is to provide a holistic sparse
sampler and only sample one clip from each video for ef-
ficient inference. That is a widely used testing scheme by
recent methods in Sth-Sth dataset [3]. Indeed, multi-view
testing could further improve the performance but also in-
crease computaitonal cost. We perform multi-view testing
(2 clips and 3 crops) on our MGSampler in the same manner
with TSM[6], and the result is shown in Table 1.

Model Frames Test-Views Sampler Top-1 Acc
TSM-R50 8 1x1 TSN 57.9
TSM-R50 8 Ix1 MG 59.8(+1.9)
TSM-R50 8 2x3 TSN 61.2
TSM-R50 8 2x3 MG 62.9(+1.7)

Table 1. Multi-view testing on Something-Something V2.
B. Use MGSampler as a clip sampler

Our MGSampler could be easily adapted to dense clip
sampling. The original dense methods samples 8 frames
from continuous 32 frames with stride 4. Our MGSampler
can adaptively sample a 8-frame clip guided by accumula-
tion curve from the same continuous 32 frames. The results
on Sth-Sth V2 are shown in Table 2, which demonstrates
the effectiveness of MGSampler on dense sampling.

Model Frames  Test-Views Clip Sampler  Top-1 Acc
SlowOnly-R50 8 Ix1 fixed stride 57.7
SlowOnly-R50 8 Ix1 MG 58.5(+0.8)
SlowOnly-R50 8 10x3 fixed stride 62.1
SlowOnly-R50 8 10x3 MG 62.5(+0.4)

Table 2. MGSampler extension as a dense clip sampler. Testing
with SlowOnly-R50 [2] on Something-Something V2.

C. Results on untrimmed videos

we extend MGSampler to untrimmed video testing. The
results in ActivityNet [1] is reported in Table 3. We first
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perform sparse frame sampling in a TSN-like framework,
and our MGSampler is better than TSN by 1.4%. Then we
use MGSampler to perform dense clip sampling as in Sec-
tion B and it is better than standard dense clip sampling by

0.7%.

Model Frames Test-Views Sampler  Top-1 Acc
SlowOnly-R50 8 Ix1 TSN 77.4
SlowOnly-R50 8 Ix1 MG 78.8(+1.4)
SlowOnly-R50 8 10x3 8x8 clip 80.3
SlowOnly-R50 8 10x3 MG(clip)  81.0(+0.7)

Table 3. Performance comparison on ActivityNet 1.3.
D. Visualization analysis

More examples of comparison between uniform sample
and motion-guided sample on Sth-Sth [3], Diving48 [5],
UCF101 [8], HMDB [4], Jester [7] datasets. The left col-
umn of Figure 1 is the cumulative distribution motion and
the right column is the sampled frames.
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Figure 1. Examples of comparison between uniform sample and motion-guided sample on five datasets.
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