
Appendix: 3D Shape Generation and Completion through Point-Voxel Diffusion

A. Additional Generation Metrics
We present additional generation metrics in Table 1, fol-

lowing PointFlow [9]. We report coverage (COV), which
measures the fraction of point clouds in the reference set
that are matched to at least one point cloud in the generated
set. We further report minimum matching distance (MMD),
which measures for each point cloud in a reference set, the
distance to its nearest neighbor in the generated set. Note
that these generation metrics can vary depending on im-
plementation and do not necessarily correlate to generation
quality, as discussed in [9].

Table 2 includes generation results on Airplane, Chair,
Car compared with the voxel-diffusion model, Vox-Diff,
as described in the main paper, evaluated using the 1-NN
metric. By generating less noisy point clouds, PVD signifi-
cantly outperforms Vox-Diff.

B. Point Cloud Generation Visualization
We additionally visualize some generation results for

Airplane, Car, and Chair in terms of the generation pro-
cess and the final generated shapes from all angles in Fig-
ures 3, 4, 5. 6, 7, 8, 9, and 10.

C. Derivation of the Variational Lower Bound

Eq(x0)[log pθ(x0)] = Eq(x0)

[
log

∫
pθ(x0, ...,xT) dx1:T

]
≥ Eq(x0)

[∫
q(x1, ...,xT |x0)

log
pθ(x0, ...,xT)

q(x1, ...,xT |x0)
dx1:T

]
= Eq(x0:T)

[
log

pθ(x0, ...,xT)

q(x1, ...,xT |x0)

]
,

where the inequality is by Jensen’s inequality.

D. Properties of the Diffusion Model
{β0, ..., βT } is a sequence of increasing parameters;

αt = 1 − βt and α̃t =
∏t

s=1 αs. Two following proper-
ties are crucial to deriving the final L2 loss.

Property 1. Tractable marginal of the forward process:

q(xt|x0) =

∫
q(x1:t|x0) dx1:(t−1)

= N (
√

α̃tx0, (1− α̃t)I).

This property is proved in the Appendix of [4] and provides
convenient closed-form evaluation of xt knowing x0:

xt =
√
α̃tx0 +

√
1− α̃tϵ, (1)

where ϵ ∼ N (0, I).
Property 2. Tractable posterior of the forward process.

We first note the Bayes’ rule that connects the posterior with
the forward process,

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)
.

Since the three probabilities on the right are Gaussian, the
posterior is also Gaussian, given by

q(xt−1|xt,x0) =

N (

√
α̃t−1βt

1− α̃t
x0 +

√
αt(1− α̃t−1)

1− α̃t
xt,

(1− α̃t−1)

1− α̃t
βtI).

(2)

E. Derivation of L2 Loss
We need to match generative transition pθ(xt−1|xt)

with ground-truth posterior q(xt−1|xt,x0), both of which
are Gaussian with a pre-determined variance schedule
β1, ..., βT . Therefore, maximum likelihood learning is re-
duced to simple L2 loss of the form with two cases:

Lt =


∥∥∥∥√α̃t−1βt

1−α̃t
x0 +

√
αt(1−α̃t−1)

1−α̃t
xt − µθ(xt, t)

∥∥∥∥2 , t > 1

∥x0 − µθ(xt, t)∥2 , t = 1

where αt = 1−βt and α̃t =
∏t

s=1 αs. The supervision tar-
get of case t > 1 comes from Eqn. 2. We can Further reduce
the case when t > 1 by substituting x0 as an expression of
xt using Eqn. 1 and arrive at

Lt =


∥∥∥ 1√

αt

(
xt − βt√

1−α̃t
ϵ
)
− µθ(xt, t)

∥∥∥2 , t > 1

∥x0 − µθ(xt, t)∥2 , t = 1

where ϵ ∼ N (0, I).
Note that when t = 1, α̃1 = α1 so that the supervision

target of the first case above evaluated at t = 1 becomes:

1
√
α1

(
x1 −

βt√
1− α̃1

ϵ

)
=

1√
α̃1

(
x1 −

√
1− α̃1ϵ

)
= x0,

(3)
where the last equality is by rewriting Eqn. 1. Therefore, in
fact, the two cases are equivalent.

The final L2 loss is

Lt =

∥∥∥∥ 1
√
αt

(
xt −

βt√
1− α̃t

ϵ

)
− µθ(xt, t)

∥∥∥∥2 .

Model

Airplane Chair Car

MMD↓ COV↑ (%) MMD↓ COV↑ (%) MMD↓ COV↑ (%)

CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

r-GAN [1] 0.4471 2.309 30.12 14.32 5.151 8.312 24.27 15.13 1.446 2.133 19.03 6.539
l-GAN (CD) [1] 0.3398 0.5832 38.52 21.23 2.589 2.007 41.99 29.31 1.532 1.226 38.92 23.58
l-GAN (EMD) [1] 0.3967 0.4165 38.27 38.52 2.811 1.619 38.07 44.86 1.408 0.8987 37.78 45.17
PointFlow [9] 0.2243 0.3901 47.90 46.41 2.409 1.595 42.90 50.00 0.9010 0.8071 46.88 50.00
SoftFlow [5] 0.2309 0.3745 46.91 47.90 2.528 1.682 41.39 47.43 1.187 0.8594 42.90 44.60
DPF-Net [6] 0.2642 0.4086 46.17 48.89 2.536 1.632 44.71 48.79 1.129 0.8529 45.74 49.43
Shape-GF [2] 2.703 0.6592 40.74 40.49 2.889 1.702 46.67 48.03 9.232 0.7558 49.43 50.28
Vox-Diff 1.322 0.5610 11.82 25.43 5.840 2.930 17.52 21.75 5.646 1.551 6.530 22.15
PVD (Ours) 0.2243 0.3803 48.88 52.09 2.622 1.556 49.84 50.60 1.077 0.7938 41.19 50.56

Table 1: Additional generation metrics, following PointFlow [9].

Airplane Chair Car

CD EMD CD EMD CD EMD

Vox-Diff 99.75 98.13 97.12 96.74 99.56 96.83
PVD (ours) 73.82 64.81 56.26 53.32 54.55 53.83

Table 2: Generation results on Airplane, Chair, Car compared with
the voxel-diffusion model, Vox-Diff, as described in the main pa-
per, evaluated using the 1-NN metric. By generating less noisy
point clouds, PVD significantly outperforms Vox-Diff.

Since xt is known when x0 is known, we can redefine the
model output as ϵθ(xt, t). Instead of directly predicting
µθ(xt, t), we instead predict a noise value ϵθ(xt, t), where

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− α̃t

ϵθ(xt, t)

)
. (4)

Substituting in µθ(xt, t) into the loss, we can arrive at
the final loss

∥ϵ− ϵθ(xt, t)∥2 , ϵ ∼ N (0, I). (5)

F. Point Cloud Generation Process
Since the transition mean µθ(xt, t) of pθ(xt−1|xt) is cal-

culated by Eqn. 4, the generative process is performed by
progressively sampling from pθ(xt−1|xt) as t = T, ..., 1:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− α̃t

ϵθ(xt, t)

)
+
√
βtz, (6)

where z ∼ N (0, I). This approach is also similar to
Langevin dynamics [3, 8] used in energy-based models,
since it similarly adds scaled noise outputs from the model
to current samples. Specifically, Langevin dynamics is in
the following form:

xt+1 = xt + s
∂

∂x
log pθ(x) +

√
2sz, (7)

where s denotes step size, pθ(x) denotes the model distri-
bution, and z ∼ N (0, I). Both processes are Markovian,
shifting the previous output by a model-dependent term and
a noise term. The scaled model output of our model can
also be seen as an approximation of gradients of an energy
function.

G. Controlled Completion

We show that our model can control the shape comple-
tion process in Figure 1. Given a pretrained completion
model, our formulation also enables control over comple-
tion results through latent interpolation. The figure below
shows one such case: we may have used the left depth map
to obtain a completed shape. But it comes with an unwanted
feature (cavity at the chair’s back). We can refine the result
by feeding another depth map (shown on the right), with a
better view of the back. To retain features from both partial
shapes, we can interpolate by (1 − λ)x̂T + λŷT in the la-
tent space at time T , where the latent features are obtained
by x̂T =

√
α̃T x̂0 +

√
1− α̃T ϵ (see Eqn. 1). Interpolation

presents diverse choices and users can actively control how
much features are shared by varying λ.

Figure 1: Controlled completion process.

H. Training Details
H.1. Model Architecture

Same as in [7], our point-voxel CNN architecture is mod-
ified from PointNet++, where we replace the PointNet sub-
structure with point-voxel convolution, as shown in Fig-
ure 2. We specify our architecture in Table 3, Table 4, and
and Table 5. Table 3 shows details of a single set abstraction
(SA) module. Table 4 shows details of a single feature prop-
agation (FP) module. Table 5 shows how these modules are
combined together.

In particular, we concatenate the temporal embeddings
with point features before sending input into the Set
Abstraction or the Feature Propagation modules. To obtain
temporal embeddings, we used a sinusoidal positional
embedding, commonly used in Transformers. Given a
time t and an embedding dimension d, the time embedding
consists of pairs of sin and cos with varying frequencies,
(sin (ω1t), cos (ω1t), ..., sin (ωd/2t), cos (ωd/2t)), where
ωk is 1/

(
100002k/d

)
.

We use the same architecture for both generation and
completion tasks. For shape completion specifically, the
model takes as input a 200-point partial shape and 1,848
points sampled from noise, totaling 2048 points. At each
step, the first 200 of the 2,048 points sampled by the model
are replaced with the input partial shape. The updated point
set is then used as input in the next time step.

H.2. Choices of βt and T

For both hyper-parameters, we follow [4]. For Car and
Chair, we set β0 = 10−4, βT = 0.01 and linearly in-
terpolate other β’s. For Airplane, we interpolate between
β0 = 10−5 and βT = 0.008 for the first 90% steps and then
fix βT = 0.008. We also set T = 1000 for all experiments
and we generally notice that lower timesteps (e.g., 100) are
not enough for the model to construct shapes.

H.3. Training Parameters

We use Adam optimizer with learning rate 2× 10−4 for
all experiments.

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3D point clouds. In ICML, 2018. 2

[2] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun
Hao, Serge Belongie, Noah Snavely, and Bharath Hariharan.
Learning gradient fields for shape generation. In ECCV, 2020.
2

[3] Yilun Du and Igor Mordatch. Implicit generation and model-
ing with energy based models. In NeurIPS, 2019. 2

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 1, 3

[5] Hyeongju Kim, Hyeonseung Lee, Woo Hyun Kang,
Joun Yeop Lee, and Nam Soo Kim. SoftFlow: Probabilistic
framework for normalizing flow on manifolds. In NeurIPS,
2020. 2

[6] Roman Klokov, Edmond Boyer, and Jakob Verbeek. Discrete
point flow networks for efficient point cloud generation. In
ECCV, 2020. 2

[7] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel cnn for efficient 3D deep learning. In NeurIPS, 2019.
3

[8] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian
Wu. Learning non-convergent non-persistent short-run
MCMC toward energy-based model. In NeurIPS, 2019. 2

[9] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. PointFlow: 3D point cloud
generation with continuous normalizing flows. In ICCV, 2019.
1, 2

Figure 2: Model architecture diagram.

Set Abstraction
Input Feature Size: Ninput × Cinput

Input Time Embedding Size: Ninput × Et

Output Feature Size: Noutput × Coutput

Voxelization Resolution: D
Number of Point-Voxel Convolution (PVConv) blocks: L

Whether to use attention mechanism: use_attn
PVConv ×L

Layers In-Out Size Stride
Input: (X, t) (D ×D ×D × Cinput, D ×D ×D × Et)
Concat(X, t) - -

3x3x3 conv(Coutput), GroupNorm(8), Swish D ×D ×D × Coutput 1
Dropout(0.1)

3x3x3 conv(Coutput), GroupNorm(8) D ×D ×D × Coutput 1
Attention(use_attn) D ×D ×D × Coutput

MLP
1x1x1 conv(Coutput), GroupNorm(8), Swish D ×D ×D × Coutput 1

Sampling & Grouping
Number of Centers: Ncenter

Grouping Radius: r
Number of Neighbors: Nneighbor

Table 3: Set Abstraction Layer. Input is first fed through L PVConv modules, then to an MLP module, and finally through the Sampling &
Grouping module.

Feature Propagation
Input Feature Size: Ninput × Cinput

Output Feature Size: Noutput × Coutput

Voxelization Resolution: D
Number of Point-Voxel Convolution (PVConv) blocks: L

Whether to use attention mechanism: use_attn
Interpolation
PVConv ×L

Layers In-Out Size Stride
Input: X D ×D ×D × Cinput

3x3x3 conv(Coutput), GroupNorm(8), Swish D ×D ×D × Coutput 1
Dropout(0.1)

3x3x3 conv(Coutput), GroupNorm(8) D ×D ×D × Coutput 1
Attention(use_attn) D ×D ×D × Coutput

MLP
3x3x3 conv(Coutput), GroupNorm(8), Swish D ×D ×D × Coutput 1

Table 4: Feature Propagation Layer. Input is fed through Interpolation module, L PVConv modules, and an MLP module.

Input Feature Size: 2048× 3
Input Time Embedding Size: 64
Output Feature Size: 2048× 3

Time Embedding
Sinusoidal Embedding dim = 64

MLP(64, 64)
LeakyRelU(0.1)

MLP(64, 64)
SA 1 SA 2 SA 3 SA 4

L 2 3 3 0
Cinput 3 32 64 -
Et 64 64 64 -

Coutput 32 64 128 -
D 32 16 8 -

use_attn False True False -
Ncenter 1024 256 64 16

r 0.1 0.2 0.4 0.8
Nneighbor 32 32 32 32

FP 1 FP 2 FP 3 FP 4
L 3 3 2 2

Cinput 128 256 256 128
Coutput 256 256 128 64
D 8 8 16 32

use_attn False True False False
MLP(64,3)

Table 5: Entire point-voxel CNN architecture. Input point clouds and time steps are sequentially passed through SA 1-4, FP 1-4, and
an MLP to obtain output of the same dimension. At the start of each SA and FP module, time embedding and point features are first
concatenated.

Figure 3: Airplane generation process.

Figure 4: Airplane results from all angles.

Figure 5: Car generation process.

Figure 6: Car results from all angles.

Figure 7: Chair generation process.

Figure 8: Chair results from all angles.

Figure 9: Chair generation process.

Figure 10: Chair results from all angles.

