
Supplemental Material for
Adaptive Graph Convolution for Point Cloud Analysis

A. Network architecture

Part segmentation. Our segmentation network on
ShapeNetPart dataset includes a spatial transformer net-
work [1] before the convolution layers. It processes the
input points and outputs a 3 × 3 matrix in order to apply
a global transformation. We apply standard graph convolu-
tions (64, 128, 1024), followed by a max pooling function
and fully-connected layers (512, 256). The output matrix
is initialized as an identity matrix. Here, it is also possible
to replace these graph convolutions with AdaptConv layers,
but this does not lead to a significant improvement. Since
the input contains normals as additional attributes, we apply
the 3 × 3 matrix separately to the point and normal dimen-
sions. The STN module can be seen as a global adaptive
kernel that is convolved with all input points similar as in
our AdaptConv. We report the results of networks with and
without STN in Tab. 1.

Kernel function for adaptive convolution. We detail
the design of gm that generates adaptive kernels in Eq.1
of the main paper. As discussed before, gm is a two-layer
shared MLP on the feature input ∆fij . It is an inevitable
choice to use a shared mapping as the kernel function. How-
ever, note that gm is not the convolution kernel (fixed ker-
nel) that is applied to points, but is to explore the different
feature correspondences for different pairs of points. In the
implementation, we process all gm (m = 1, 2, ...,M ) to-
gether and obtain the adaptive kernels for the following con-
volution (see Fig. 1). The first layer is one shared MLP(d)
for all gm, and we organize the kernels as a weight matrix
(c×M ) which is then applied to the corresponding ∆xij of
dimension c by matrix multiplication. After a LeakyReLU,
the edge feature hij is obtained and finally we apply Eq.3
of the main paper for the output feature of the central point.
The resnet connection is an optional block which is used in
our segmentation model.

B. Ablation studies

In this section, we give more details for ablation net-
works used in Sec.4.3 of the main paper.

Attentional convolution. In order to compare our model
with attentional graph convolutions, we design several abla-

2D (c x M)

c

MLP(d)
1x1 

Conv
d cM

Matrix 

Multiplication

(optional) 1x1 Conv, BN

Δ𝑓𝑖𝑗 ℎ𝑖𝑗

LeakyReLU

1x1 Conv BN LeakyReLU

MLP

M

Δ𝑥𝑖𝑗

Figure 1. Kernel function used in our adaptive convolution. We
apply a two-layer MLP for the adaptive weight matrix. The output
edge feature is obtained by matrix multiplication between ∆xij

and the weight matrix. Optional resnet block: shortcut 1 × 1 con-
volution and batch normalization layer.

tions which replace AdaptConv layers with attentional con-
volution layers in the network. Following the design of [2],
the output feature can be formulated as follows:

f ′i = max
j∈N (i)

aij ∗ h(fj), (1)

where h : RD → RM is a shared MLP and aij is the atten-
tional weight calculated as:

aij = softmaxj(α(∆fij)). (2)

Here, α(·) is a mapping function, and ∆fij =
[h(fi), h(fj) − h(fi)] since the attentional weights are ap-
plied to h(fj) instead of fj . A softmax is used to make∑

j aij = 1, j ∈ N (i). In Sec.4.3 of the main pa-
per, the point-wise attentional weight (Attention Point) uses
aij ∈ R, i.e., the function is α : R2M → R. The channel-
wise attenional weight (Attention Channel) uses aij ∈ RM

and, in this case, ∗ denotes the element-wise product.
The attentional weights aij are based on the produced

features h(fj) in order to determine the different contri-
butions of the neighboring points. However, since the ap-
plied convolution kernel h(·) is still a fixed/isotripic one
as we discussed in the main paper, they still cannot solve
the intrisic limitation of current graph convolutions. The re-
sults of these ablation networks trained on the ShapeNetPart
dataset are given in Sec.4.3 of the main paper. Furthermore,
we show more comparisons on ModelNet40 for classifica-
tion in Tab. 2.



(a) Spatial (b) Layer1 (c) Layer2 (d) Layer4 (e) Ours (f) GT

Figure 2. Visualize the Euclidean distances between the target point (green point in (a)) and other points in the feature space. Red color
denotes a closer point and yellow one is far from the target. We show the feature distances in several layers of the network, which provides
a clear insight that our network is able to distinguish points belonging to different semantic parts. It can also capture non-local similar
structures (see the handles in the second row).

Method mcIoU(%) mIoU(%)

w/o STN 83.2 86.2
STN 83.4 86.4

Table 1. Segmentation results for models using STN.

Method mAcc(%) OA(%)

GraphConv 88.8 92.5
Attention Point 88.5 92.1

Attention Channel 89.2 92.2
Ours 90.7 93.4

Table 2. Results of ablation networks on ModelNet40.

Method #parameters Time(ms) OA(%)

Baseline (w/o AdaptConv) 1.81M 93.1 92.5
AdaptConv (Layer2) 1.85M 129.1 93.4
AdaptConv (Layer3) 1.95M 168.4 93.0
AdaptConv (Layer4) 2.35M 276.0 93.2

Table 3. Number of parameters, forward pass time (per batch) and
overall accuracy for different models using AdaptConv.

C. Model complexity

The standard graph convolution adopted in this paper
contains 2DM parameters (2D denotes the dimension of
feature input ∆fij). Here, D and M denote the input and
output dimensions respectively. As described in Sec. A,
the kernel function uses a two-layer MLP which contains

dD + dcM parameters where c is the dimension of ∆xij
(c = 3 × 2 for point coordinates (x,y, z) input). d is
the dimension of hidden layer of the kernel function (see
Fig. 1) and it can be adjusted to reduce the model size. In
practice, we design the network architecture with two lay-
ers of AdaptConv which already achieves a pleasing perfor-
mance. We further report the results and parameter num-
bers on ModelNet40 using different numbers of AdaptConv
layers in Tab. 3. The adopted design (Layer2) significantly
improves the network performance while the model size is
relatively small. For the time performance evaluation, we
also report the forward pass times of different models. The
proposed AdaptConv layer is able to improve the perfor-
mance of existing graph CNNs while being efficient.

D. More visualizations

In this section, we provide more results to further demon-
strate the effectiveness of the proposed AdaptConv over
fixed kernel methods. We first visualize the segmentation
results on ShapeNetPart dataset in Fig. 3. In this experi-
ment, we compare the results of DGCNN [3], attentional
graph convolution (Attention Point described in Sec. B) and
AdaptConv. Our results are better in challenging regions,
such as part boundaries and object edges. This verifies that
our method is able to capture distinguishable features for
points belonging to different parts. More visualizations on
the ShapeNetPart dataset are given in Fig. 4 and Fig. 5. In
Fig. 5, we color the points with incorrect predicted labels in
red.



(a) DGCNN (b) Attention (c) Ours (d) GT

Figure 3. Segmentation results on ShapeNet dataset. The labelled
points are visualized in different colors. We compare our adap-
tive graph convolution with DGCNN [3] (standard graph convolu-
tion) and attentional convolution network (Attention Point). Our
method produces better results especially for points close to the
object boundaries and edges. Zoom in to see clearer.

We offer more insights of the adaptive mechanism from
learned features. As shown in Fig. 2, a target point (green
point) is picked up and we compute the distances in the fea-
ture space to other points. When the point is close to edges
between different semantic parts, our network encourages it
to have distinguishable features which captures better geo-
metric information. Thus, it is separated from other parts
of the objects, as shown in the first row of Fig. 2. Also,
we see that in the second row of Fig. 2, points belonging
to the same semantic part share similar features while they
may not be spatially close. Note that, Fig. 2(a) indicates the
spatial distances with regard to the central point.

References
[1] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and

Koray Kavukcuoglu. Spatial transformer networks. arXiv
preprint arXiv:1506.02025, 2015. 1

[2] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adri-
ana Romero, Pietro Lio, and Yoshua Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017. 1

[3] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On
Graphics (tog), 38(5):1–12, 2019. 2, 3



Figure 4. Part segmentation results on ShapeNet dataset. Figure 5. The error labels (red) compared with ground truth.


