AutoSpace: Neural Architecture Search with Less Human Interference

Daquan Zhou!, Xiaojie Jin 2, Xiaochen Lian?, Linjie Yang?, Yujing Xue', Qibin Hou'; Jiashi Feng'
'National University of Singapore,”’ByteDance US Al Lab

{zhoudaquanZl, xjjin0731, lianxiaochen, yljatthu, andrewhoux}@gmail.com

xueyjl4@outlook.com, elefjia@nus.edu.sg

1. Implementation details

Search space generation When generating the search
space, we set the batch size to be 256 and mutation fre-
quency to be 40 iterations. We use 40 epochs for warm-up
and 120 epochs for the evolution process. The population
size is set to be 1000 and the team size for tournament se-
lection is scheduled to increase from 30 to 250 every 30
epochs. The reference graph stop epoch is set to be 60.

Supernet construction Following ProxylessNAS [1], we
set the total number of layers of the supernet to be 21 with
one 3x3 convolution layer at the begining as the head and
one fully connected layer at the end as the classifier. Each
layer of the supernet is initialized with 9 randomly sampled
cells from the population. The supernet is updated during
tournament selection as illustrated in Fig. 2 in the main pa-
per and Fig. 1 in the supplementary material. During evo-
lution, we sample 9 cells from the population for each layer
via tournament selection and use those selected cells to gen-
erate mutations and then replace the cells in the supernet.

Search space evaluation To verify the superiority of our
auto-learned search space, we select the widely used IRB
based search space [15, 1, 16] as a strong baseline. Differ-
ent from the one used in MNasNet [15], we do not add in
Squeeze and Excite(SE) [5] modules in the search space as
it has been recognized as a widely used tricks for improv-
ing the model performance. Instead, we add in SE mod-
ules manually after finding the optimal model in the search
space and compare the results with other methods that also
has SE modules added in the similar manner for a fair com-
parison. We use the searching algorithms proposed in [1]
as a standard architecture searching methods on both the
baseline search space and AutoSpace for the performance
comparison in the ablation study. When comparing with
the baseline search space, we use the curve estimates meth-
ods as adopted in [6, 22]: we search for a handful of mod-
els within AutoSpace and the baseline search space respec-
tively and then tracing the curves of accuracy vs. model

*Corresponding author.

complexity. The learned search space is considered as su-
perior than the baseline search space if every point in the
AutoSpace’s curve is higher than the baseline search space’s
curve.

2. Algorithm details

The details of the proposed differentiable evolutionary
algorithm (EDA) is shown in Alg. 1 and Alg. 2. Alg. 1
shows the initialization process and Alg. 2 shows the details
of the evolution process as illustrated in Fig. 2 in the main
paper. In Alg. 1, we abuse the notion of G to simplify the
notions. We use G' to denote the population of cells for
layer [and Gﬁc to denote the graph topology of cell dﬁg.

Algorithm 1 Differentiable evolutionary algorithm for
search space generation (Initialization)

Input: Number of layers L, length of the mutation win-
dow
for! =1to L do
Initialize Population G'
S! = tournament select(G?, K)
for k = 1to K do
d. = 5t
Initialize afc =0
end for
end for

3. COCO Object Detection

We further compare the proposed method with Proxy-
lessNAS [1] and MobileNet [4] models on object detec-
tion to explore the task transfer capability of the searched
model from our generated search space. Following [14],
we report the results on COCO dataset [8] using SSDLite
framework[14, 10]. Our implementation is based on Py-
Torch. Following the same configurations in [14], the first
two layers of SSDLite are connected to the last pointwise
convolutional layer with output stride of 16 and 32, respec-
tively. The rest of SSDLite layers are added on top of the

Table 1: Comparison with baseline backbone on COCO object detection and instance segmentation. ‘Cls’ denotes the Top-1 classification
accuracy on ImageNet. mAP denotes the mean average precision for objection detection on COCO. We report the computational cost on
ImageNet dataset with image size of 224 x 224 for consistency with previous experiments.

Method Backbone Param. M) MAdds(M) Cls(%) AP AP5o AP7s APs AP, APp
SSDLite320 MobileNet 4.2 569 70.6 222 - - -
SSDLite320 ProxylessNAS 7.17 470 74.88 214 36 21.5 1.9 194 42.7
SSDLite320 Ours 4.61 415 75.83 24.5 40.3 25.2 3.1 24.8 46.7

Algorithm 2 Differentiable evolutionary algorithm for
search space generation (Evolution)

Input: Number of layers L, length of the mutation win-
dow, number of epochs for training F, mutation fre-
quency f
fore=1to £ —1do
for iteration i, Mini-batch data pair (X,Y) in data
loader do
Calculate probability for each path: p'= softmax (&)
Sample an active path according to the calculated
probability
Forward pass the supernet
Update weights parameters
Update fitness score in the supernet
if (i% f) == 0 then
for! =1to L do
for k = 1to K do
Update fitness score « via Eqn.(5)
end for
S! = tournament select(G!, K)
end for
for k =1to K do
Local mutate(dﬁg)
while Madds(d}) >
rH(ch,GT'ef) > 7do
Local mutate(d},)
end while
end for
Update supernet according to Sec.(3.2)
end if
end for
end for
Select top-K cells in the population for each layer:
S'= GfK
Output: generated search space {S*, 52, ..., ST}

Madds,,,x or

last convolutional layer with output stride of 32. During the
training, the batch size is set to be 256 and the synchronized
batch normalization is used. We use the cosine learning
schedule with an initial learning rate of 0.01 and train the
models with 8 GPUs for 200,000 iterations. More detailed
settings can be found in [14, 10]. In Tab. 1, we compare

the results of different models on COCO 2017 validation
set. Besides the AP score, we also report results in terms of
APs5g, AP75, APg, AP, and APy, respectively. As can be
seen, with less computation cost, SSDLite equipped with
our searched backbone network achieves better results on
all metrics compared to SSDLite with MobileNet and Prox-
ylessNAS. Above experiments demonstrate that our auto-
learned search space contains models that have strong gen-
erality for other vision tasks like object detection, not lim-
ited in image classification.

4. More analysis
4.1. Gradient compensation

During evolution, in each layer, only K cells in the pop-
ulation are selected via tournament selection for a single
round of fitness score updates as detailed in Alg. 2. This
introduces an issue of imbalance gradient updates due to
the randomness introduced in the tournament selection. We
illustrate this imbalance in details in Fig. 1: we illustrate
three rounds of tournament selections for the fitness score
updates process. After three rounds of tournament selec-
tion, some of the cells are updated with more gradient steps.
Motivated by [20], we propose to estimate the gradients of
each cell based on the training iterations via Eqn. (4) in the
main paper.

4.2. Model architecture for robustness analysis

As mentioned in Sec. 4.3 in the main paper, we run a set
of experiments to study the robustness of the fitness scores
to variations. We manually design three networks with the
basic building blocks proposed in ResNet [3]. The detailed
configurations for the three networks are shown in Tab. 2.

4.3. Weights sharing discussion

As shown in Fig. 7 in [19], the learned rankings of the
models in the search space with a weight sharing based
NAS algorithm may not be accurate and is fluctuating dur-
ing the searching phases. However, the ranking difference
among the candidate architectures are within a range. Thus,
by selecting more candidate cell structures, the probabil-
ity of containing the optimal solution in the searched space
is higher than searching a single model. Thus, when ex-
ploring a large space, AutoSpace has higher probability to

Cell fitness score

Training Iterations

1
Input image Layer 1 Layer 2 Layer [output | N K
; training iterations
Tournament Local i
Layer [population selection mutation ¢ i [—
. ‘ (Cell1, o) ‘ ‘ (Cell 7, a7) | I Cell 5 n—
) f Cell 2, .o
Iteration 0 x 40 (Cell2, oy) (Cell9, o) ECeHS - : | Cell7 n—
Updates a via Enq.(4) \ﬁ(T- ; cens
(Cell 5, o) (Cell 8, o) — (Cell 7, aty) ;oo
! o w w0 120
1 Training Iterations
i
Tournament Local U cell —
Layer I population selection mutation | Cell2 e— |
(Cell2, ;) CCells m— 1
[(Cellt,a1)] [(Cell7, @) | =:.~ U — |
Iteration 1x 40 {Cell 2, az) | | (Cell9, dp) !ocers
Updates a via Eng.(4) 1 cello
(Cell 5,a5) | [(Cell8, aq) C——— v ; . w w 20
; Training Iterations
i
i
Tournament Local : Cell 1 —
Layer I population selection mutation ! Cell 2 n—
CellLal) | [(Cell7, a) 1 Cells mm—
Iteration 2x 40 (Cell2, @) (Cell 9, &) ! E:::;
Updates a via Eng.(4) Y e
ell 9 ay ©
(Cell 5, a5) | [[(Cell, a5) D ! o w© ®
1
i

Figure 1: Illustration of the gradient updates imbalance during tournament selection. In the figure, we show the fitness score updates for
120 training iterations with mutation frequency f = 40. On the right hand side of the figure, we plot the number of gradient updates steps
for each cell in the population of layer [. As can be seen, the number of gradient updates steps are different for different cells’ fitness score.
To mitigate this gradient updates imbalance issue, we compensate the gradient update steps via Eqn.(5) in the main paper.

Table 2: Configurations of the three network architectures for fitness score robustness analysis. We use the the same basic building block
as introduced in ResNet [3]. ‘1000-d fc’ denotes the fully connected layer with 1000 output nodes. This is used as the classifier of the
networks. The ground truth ranking of the three networks is Netl < Net2 < Net3.

Layer name Output size Net 1 Net 2 Net 3
conv_1 112 x 112 7 x 7,64
MaxPooling 56 x 56 3 x 3, stride 2
3 % 3,64 3 x 3,64 3 x 3,64
conv2_x 56 x 56 [3><3,64:|><1 |:3><3,64]><1 [3><3,64:|><2
3 x 3,128 3% 3,128 3 x 3,128
conv3-x 2828 {3x3,128}“ [3x3,128]“ {3x3,128}“
3 % 3,256 3 X 3,256 3 % 3,256
convd_x 1414 {3><3,256}X1 [3x3,256]“ {3><3,256}X2
3 x 3,512 3% 3,512 3 x 3,512
comv3x T {3x3,512}Xl {:ax?,,sm]X2 {3x3,512}“
1x1 avgpool, 1000-d fc, softmax
include the optimal solutions than the conventional NAS 4.4. Local mutation
algorithms which search for a single model directly. As
shown in Tab. 2 in the main paper, with less computational To speed up the searching process, we implement a local
cost and memory footprint, the two step searching strategy mutation strategy as illustrated in Fig. 2: the starting and
used by AutoSpace achieves 2.1% top-1 classification ac- stopping nodes for mutation are only allowed to be in the
curacy improvement on ImageNet over the traditional one same mutation window. The mutation window is a sliding

step searching algorithm. window with a pre-defined length L.

——— Valid edge
____________ -----+ Removed edge

w2 w3

Figure 2: Illustration on local mutations with the mutation
window. A 5-node fully connected DAG with a sliding mutation
window of size 3 (covering 3 nodes). The solid line denotes the
edges that are kept for mutation while the dotted lines are edges
connecting the nodes outside the mutation window and are re-
moved from mutation.

4.5. Architecture searching algorithms discussion

Generally, neural architecture searching algorithms can
be divided into cell based searching methods [21, 12, 9, 7]
and block based searching methods [1, 2, 15]. Cell based
searching methods only search for several cell typologies
and then stack them together to form the full network. Dif-
ferently, the block-based searching algorithms allow dif-
ferent cell structures for different layers. Although with
superior model performance, current block-based search
spaces [15, 1] needs human interferes and requires expert
knowledge on architecture properties. The search space are
mainly based on the inverted residual block [14] with vari-
able kernel sizes and expansion ratios. We also use block-
wise searching algorithms in this work due to their high
performance and efficiency. Differently, we resort to an dif-
ferentiable evolutionary framework (DEA) to learn a set of
search spaces. We only defines a set of basic operators and
a fully connected DAG to minimize the manual efforts on
graph topology design. In this manner, we are able to mini-
mize the manual efforts while still enjoy the high searching
efficiency of the block-wise searching algorithms.

In terms of the design choices in the search space, the
searching algorithms can also be categorized into graph
topology searching and structural hyper-parameter search-
ing based on the definition of the search space. For graph
topology searching, typically a general directed acyclic
graph (DAG) is defined and the target is to search for the
connection between nodes and the operations applied to
each connection [11, 13, 12]. Structural hyper-parameter
searching defines their search spaces based on a prede-
fined graph structure, which search for structural hyper-
parameters such as the kernel sizes, image resolutions and
channel widths [18, 17, 15, 1]. Our method targets at graph
topology searching and is orthogonal to filter structural
hyper-parameter optimization. Once we found a promis-
ing graph topology, the optimal structural hyper-parameters
can be applied to further enhance the performance.

References

[1] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018.

[2] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

shot neural architecture search with uniform sampling. arXiv

preprint arXiv:1904.00420, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770-778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7132-7141, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700-4708, 2017.

Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He,

Weiran Huang, Kechen Zhuang, and Zhenguo Li. Darts+:

Improved differentiable architecture search with early stop-

ping. arXiv preprint arXiv:1909.06035, 2019.

[8] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740-755.

Springer, 2014.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.

Darts: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018.

[10] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21-37. Springer, 2016.

[11] Zhuang Liu, Jianguo Li, Zhigiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 2736-2744, 2017.

[12] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780-4789, 2019.

[13] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc Le, and Alex Kurakin.
Large-scale evolution of image classifiers. arXiv preprint
arXiv:1703.01041, 2017.

[14] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, pages 45104520,
2018.

[3

—

[4

—

[5

—

[6

—_

[7

—

[9

—

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2820-2828, 2019.
Mingxing Tan and Quoc V Le. Mixconv: Mixed depthwise
convolutional kernels. CoRR, abs/1907.09595, 2019.

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-
dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,
Kan Chen, et al. Fbnetv2: Differentiable neural architecture
search for spatial and channel dimensions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12965-12974, 2020.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
CVPR, pages 10734-10742, 2019.

Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat,
and Mathieu Salzmann. Evaluating the search phase of neu-
ral architecture search. In ICLR, 2020.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai
Yu, Zhi-Ming Ma, and Tie-Yan Liu. Asynchronous stochas-
tic gradient descent with delay compensation for distributed
deep learning. arXiv preprint arXiv:1609.08326, 2016.
Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697-8710,
2018.

	. Implementation details
	. Algorithm details
	. COCO Object Detection
	. More analysis
	. Gradient compensation
	. Model architecture for robustness analysis
	. Weights sharing discussion
	. Local mutation
	. Architecture searching algorithms discussion

