
S-1. More Experimental Results
S-1.1. More Shots

As the number of visible samples (support shots) in-
creases (Figure S-1), performance gradually improves, and
BML is steadily higher than the two single-view baselines.
Besides, the performance of BML-global and BML-local
under the binocular mode is superior to baseline-global and
baseline-local under single view mode.
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Figure S-1. Comparison between BML and the two baselines with
more shots.

S-1.2. More Benchmarks

To further verify the performance of BML, we do experi-
ments on another public few-shot classification benchmark:
FC100. FC100 is derived from CIFAR-100, which has a
total of 100 classes. Among them, 60 classes are used for
training, 20 are used for verification, and the remaining 20
are used for testing. Since the division is carried out at the
superclass level, the information overlap between splits is
minimized, thus more challenging.

As is shown in Table S-1, on FC100, BML is still su-
perior to the two single-view baselines, and stays ahead of
the other six competitors. Specifically, three key points are
conveyed which have been emphasized in Section 4:

• Binocular learning is better than single-view mode.
BML is 2% higher than the single global view and 5%-
9% higher than the single local view.

• On coarse-grained dataset, global view performs better
than local view.

• The two complementary views can promote each other
(i.e., BML-global vs. baseline-global, BML-local vs.
baseline-local), and the global impact on the local view
is more obvious.

S-1.3. More Analyze of elastic loss

We carefully monitor the elastic loss and further explore
its mechanism. Figure S-2 shows the trend of training loss
and distance between prototypes with or without elastic loss
(On miniImageNet). Obviously, comparing the left subfig-
ure of Figure 2(a) with the one of Figure 2(b), we can find
that when no elastic loss is applied, the loss value quick-
ly drops to a low point, and the subsequent decline has

Table S-1. Comparison on FC100.

Method FC100
5-way 1-shot 5-way 5-shot

MAML 38.10±1.70 50.40±1.00
MetaOptNet 41.10±0.60 55.50±0.60
ProtoNet 35.30±0.60 48.60±0.60
TADAM 40.10±0.40 56.10±0.40
Rethink 42.60±0.70 59.10±0.60
DC 42.04±0.17 57.05±0.16
Baseline-local 38.88±0.38 54.25±0.40
Baseline-global 42.61±0.39 61.03±0.40
BML-local 43.25±0.41 58.70±0.39
BML-global 43.88±0.40 62.06±0.39
BML 45.00±0.41 63.03±0.41

been very slow. On the contrary, after applying the elas-
tic loss, the initial loss value is increased significantly, and
the downward trend is more obvious. This shows that e-
lastic loss does increase the difficulty of optimization. Fur-
thermore, as shown in right subfigures of Figure 2(a) and
Figure 2(b), the distance between N prototypes (first-order
moment) shows a similar change. With the help of elastic
loss, the distance between prototypes is gradually expand-
ed, and the features are more dispersed in the embedding
space. This shows that the network is learning to ampli-
fy the difference between prototypes to improve matching
accuracy.
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Figure S-2. Loss value and mean distance between prototypes on
the base set.

S-1.4. More Visualization of tasks

We randomly visualize two tasks in Figure S-3, from left
to right, they represent BML, baseline-global and baseline-
local. Obviously, the prototypes (highlight with star) com-



puted by BML are more dispersed in the embedding space,
which proves that BML helps to obtain more discriminative
features.

Figure S-3. t-SNE visualization results on two tasks.

S-1.5. More analyze of mutual interaction

In order to further verify the influence of mutual interac-
tion on performance, we design a series of ablation experi-
ments, including the impact of the number of shared blocks
and the influence of mutual interaction. Here is the result
(S:share, I:independent).

Table S-2. Analysis of the number of shared blocks.
Methods Accuracy Params.
(a) Ensemble 81.08 ± 0.31 24,930,688
(b) BML(S0I4) 83.10 ± 0.30 24,930,688
(c) BML(S1I3) 83.24 ± 0.30 24,813,504
(d) BML(S2I2) 83.30 ± 0.29 24,249,024
(e) BML(S3I1) 83.63 ± 0.29 21,891,264

According to the results shown in Table S-2, compar-
ing (a) and (b), the simple integration of baseline-global
and baseline-local without interactive learning has almost
no benefit since the difference between two models is rel-
atively large (see in Table 2), while (b) still has good per-
formance, it is mutual interactive learning ensures that the
features of the two branches have similarities while main-
taining appropriate differences. Comparing (b)-(e), the per-
formance of BML changes relatively gently, which shown
the main factor that affects the performance is whether per-
forming binocular mutual learning. To reduce the amount
of parameters, BML only separates the last block.

S-2. Efficient Implementation of BML
To fully unleash the power of binocular framework, dur-

ing training, we adopt uniform sampling strategy. Specifi-
cally, a batch contains N = 15 randomly sampled classes.


