Supplementary: Learning specialized activation functions with the Piecewise
Linear Unit

1. A plug-and-play implementation for PWLU
Code 1: A plug-and-play implementation in PyTorch
import torch

1
2
3 class PWLU (torch.nn.Module) :

4 def _ _init_ (self, N, T, ...):
5

self.N = N
6 self.count = 0
7 self. T =T
8 self.bl = torch.nn.Parameter (torch.Tensor (1).£fil1l_(-3))
9 self.br = torch.nn.Parameter (torch.Tensor (1) .£fill_(3))
10 self.kl = torch.nn.Parameter (torch.Tensor (1).£f1i11_(0))
11 self.kr = torch.nn.Parameter (torch.Tensor (1) .fill_ (1))
12 self.yp = torch.nn.Parameter (torch.Tensor (N + 1))
13 self.register_buffer ("running mean", torch.zeros(l))
14 self.register_buffer ("running_std", torch.ones (1))
15 self.momentum = 0.9
16 self.fix = True
17
18
19 def collect_stats (x):
20 self.running mean.mul_ (self.momentum) .add_(l - self.momentum, x.mean())
21 self.running_std.mul_(self.momentum) .add_(l1 - self.momentum, x.std())
22
23 def reset_boundary () :
24 self.bl.data.copy_(self.running_mean - self.running std * 3)
25 self.br.data.copy_(self.running _mean + self.running_std x 3)
26 dist = (self.br - self.bl) / self.N
27 bpoints = [self.bl]
28 for i in range(self.N):
29 bpoints.append (bpoints[-1] + dist)
30 bpoints = torch.Tensor (bpoints)
31 self.yp.data.copy_ (F.relu (bpoints))
32 self.fix = False
33
34 def forward(self, x):
35 if self.train and self.count <= self.T:
36 self.count += 1
37 if self.count < self.T:
38 self.collect_stats(x.detach())
39 elif self.count == self.T:
40 self.reset_boundary ()

41 return self.compute_pwlu (x)



Most of the scalar activation functions such as ReLU and Swish are plug-and-play modules, which is an important reason
for their wide acceptance. However, the statistic-based realignment of PWLU breaks the training loop into two phases,
making it inconvenient to apply the method. Here we show that PWLU can be implemented as a plug-and-play module as
well.

As noted in Section 3.3, our method only requires slight changes to normal training procedures, which are limited to
PWLU itself and do not affect any other components. So we can hide the phase changing into PWLU module, as shown in
Code 1. We track the training iterations in the forward pass and call collect_stats or reset_boundary accordingly. The main
computation compute_pwlu can be implemented according to Equation 1, which has been thoroughly explained. Under such
implementation, PWLU can be easily applied without any change to the training loop, just like ReLLU or Swish.



