
Omni-GAN and Omni-INR-GAN
Supplementary Material

Table of Contents
A. Derivation from Unified Loss to Omni-loss. 1

A.1. Derivation of Omni-loss 1
A.2. Gradient Analysis 2

B. Gradient Penalty for Classification-based
cGANs 3

C. Improved AC-GAN (ImAC-GAN) 3

D. Technical Details of Omni-INR-GAN 3

E. An Example of Multi-label Discriminator 4

F. Additional Results on CIFAR 4
F.1. Over-fitting of the Discriminator . . . 4
F.2. Comparison of One-sided Omni-GAN

and Projection-based GAN on CI-
FAR10 5

F.3. Comparison with Multi-hinge GAN . 5
F.4. Comparison with Other Regulariza-

tion Methods 6
F.5. Applying Weight Decay to the Generator 6
F.6. How to Set the Weight Decay? 7
F.7. Mathematical Explanation for Mode

Collapse 7

G. Additional Results on ImageNet 7

H. Application to Image-to-Image Translation 7

I . Application to Downstream Tasks 8
I.1 . Colorization and Super-resolution . . 8
I.2 . Reconstruction 8

J. Implementation Details 9

K. Additional Results 9
K.1. Generated Images on CIFAR 9
K.2. Generated Images on ImageNet 9
K.3. Results of Semantic Image Synthesis . 9

A. Derivation from Unified Loss to Omni-loss.
A.1. Derivation of Omni-loss

The unified loss [18] is defined as

Luni = log

1 + ∑
s
(n)
i ∈Sneg

∑
s
(p)
j ∈Spos

e

(
γ
(
s
(n)
i −s

(p)
j +m

))
= log

1 + ∑
s
(n)
i ∈Sneg

e

(
γ
(
s
(n)
i +m

)) ∑
s
(p)
j ∈Spos

e

(
γ
(
−s(p)j

)) ,
(1)

where γ stands for a scale factor, and m for a margin be-
tween positive and negative scores. Spos = {s(p)1 , · · · , s(p)K }
and Sneg = {s(n)1 , · · · , s(n)L } denote positive score set and
negative score set, respectively. Eq. (1) aims to maximize
s(p) and to minimize s(n).

The omni-loss is defined as

Lomni (x,y) = log

1 +
∑
i∈Ineg

esi(x)

+ log

1 +
∑
j∈Ipos

e−sj(x)

 ,

(2)
where Ineg is a set consisting of indexes of negative scores
(|Ineg| = L), and Ipos consists of indexes of positive scores
(|Ipos| = K).

Eq. (2) is a special case of Eq. (1), which has been proved
by [17]. For the convenience of readers in the English com-
munity, we provide our proof here. Let γ be 1 and m be 0,
then

Luni = log

1 + ∑
s
(n)
i ∈Sneg

es
(n)
i

∑
s
(p)
j ∈Spos

e−s
(p)
j

 (3)

= log

1 + e
log

(∑
s
(n)
i
∈Sneg

es
(n)
i
∑

s
(p)
j
∈Spos

e
−s

(p)
j

)
=softplus

log
 ∑
s
(n)
i ∈Sneg

es
(n)
i

∑
s
(p)
j ∈Spos

e−s
(p)
j




=softplus

log
 ∑
s
(n)
i ∈Sneg

∑
s
(p)
j ∈Spos

es
(n)
i −s

(p)
j




≈

log
 ∑
s
(n)
i ∈Sneg

∑
s
(p)
j ∈Spos

es
(n)
i −s

(p)
j



+

,

s (n)
10

6
2

2
6

10

s
(p
)

10

6

2

2

6

10

0.0

0.2

0.4

0.6

0.8

1.0

| dL
ds(n)

|

B (0
,0,0.50)

A (4
,0,0.98)

C (-4
,0,

0.0
2)

s (n)
10

6
2

2
6

10

s
(p
)

10

6

2

2

6

10

0.0

0.2

0.4

0.6

0.8

1.0

| dL
ds(p)

|

B (0
,0,0.50)

A (4
,0,0.50)

C (-4
,0,

0.5
0)

(a)

s (p)
0

10
6

2
2

6
10

s
(p
)

1

10

6

2

2

6

10

0.0

0.2

0.4

0.6

0.8

1.0

| dL
ds

(p)
0

|

B (0
,0,

0.3
3)

A (-2
,0,0.79)

C (0
,-2

,0.
11

)

s (p)
0 10

6
2

2
6

10

s
(p
)

1

10

6

2

2

6

10

0.0

0.2

0.4

0.6

0.8

1.0

| dL
ds

(p)
1

|

B (0
,0,

0.3
3)

A (-2
,0,

0.1
1)

C (0
,-2

,0.79)

(b)

Figure 1: Gradients of the omni-loss. (a) Gradients w.r.t. s(n) and s(p) are independent. (b) Gradients w.r.t. s(p)k , {k =
0, 1, . . . }, are automatically balanced. Please see the text in Sec. A.2 for details. This figure is inspired by [18].

where [·]+ means max(·, 0).
According to log

∑n
i=1 e

xi ≈ max(x1, x2, . . . , xn), we
get

Luni ≈

[
max

s
(n)
i ∈Sneg,s

(p)
j ∈Spos

s
(n)
i − s(p)j

]
+

, (4)

where minimizing Eq. (4) makes the smallest s(p)j greater

than the largest s(n)i .
Let S(1)pos = {0} and S(1)neg = {s(n)1 , · · · , s(n)L }. According

to Eq. (3), we get

L(1)
uni = log

1 + ∑
s
(n)
i ∈S

(1)
neg

es
(n)
i

∑
s
(p)
j ∈{0}

e−s
(p)
j


= log

1 + ∑
s
(n)
i ∈S

(1)
neg

es
(n)
i e0


= log

1 + ∑
s
(n)
i ∈S

(1)
neg

es
(n)
i

 ,
(5)

where from Eq. (4) we know that minimizing Eq. (5) makes
s
(n)
i less than 0.

Let S(2)pos = {s(p)1 , · · · , s(p)K } and S(2)neg = {0}. According
to Eq. (3), we get

L(2)
uni = log

1 + ∑
s
(n)
i ∈{0}

es
(n)
i

∑
s
(p)
j ∈S

(2)
pos

e−s
(p)
j


= log

1 + e0
∑

s
(p)
j ∈S

(2)
pos

e−s
(p)
j


= log

1 + ∑
s
(p)
j ∈S

(2)
pos

e−s
(p)
j



(6)

where minimizing Eq. (6) makes s(p)j greater than 0.

Adding Eq. (5) and Eq. (6), we get

Lomni = log

1 + ∑
s
(n)
i ∈S

(1)
neg

es
(n)
i

+ log

1 + ∑
s
(p)
j ∈S

(2)
pos

e−s
(p)
j

 ,
(7)

where minimizing Eq. (7) makes s(n)i less than 0 and s(p)j
greater than 0. We finish the derivation.

A.2. Gradient Analysis

The gradients of omni-loss have two properties: on one
hand, the gradients w.r.t. s(n) and s(p) are independent; on
the other hand, the gradients w.r.t. s(p)k (or s(n)k), {k =
0, 1, . . . }, are automatically balanced. To illustrate these
properties, we visualize the gradients of omni-loss. Fig. 1a
shows a case that only contains one s(n) and one s(p). A,B,
andC have the same s(p), which is 0, but different s(n) (i.e.,
4, 0,−4, respectively). As a result, the gradients w.r.t. s(p)

at these three points are the same (i.e., 0.5). Nevertheless,
the gradients w.r.t. s(n) at these three points are different.
For example, the gradient w.r.t. s(n) at A is largest (equal to
0.98). The reason for this is that the objective of omni-loss
is to minimize s(n). Thus the larger the s(n), the larger the
gradient w.r.t. s(n).

In Fig. 1b, we show the ability of omni-loss to automat-
ically balance gradients. We consider a case with only two
positive labels, namely s(p)0 and s(p)1 . We can observe that
forA, its s(p)0 is smaller than s(p)1 (i.e., -2 vs. 0). As a result,
the gradients w.r.t. s(p)0 is larger than that w.r.t. s(p)1 (i.e.,
0.79 vs. 0.11), meaning that the omni-loss try to increase
s
(p)
0 with higher superiority. A similar analysis applies to C

as well. For B, since s(p)0 and s(p)1 are equal, the gradients
of them are also equal (0.33).

0.0 0.5 1.0 1.5 2.0 2.5

Real images shown to D 1e7

0

50

100

150

200

250

300

FI
D

Omni-GAN
AC-GAN w/ GP
AC-GAN w/ Div
AC-GAN w/ R1Reg

(a) FID on CIFAR100

0.0 0.5 1.0 1.5 2.0 2.5

Real images shown to D 1e7

2

4

6

8

10

12

IS

Omni-GAN
AC-GAN w/ GP
AC-GAN w/ Div
AC-GAN w/ R1Reg

(b) IS on CIFAR100

Figure 2: FID and IS on CIFAR100. We test three gradient
penalty methods (i.e., WGAN-GP, WGAN-div, and R1 reg-
ularization), none of which can alleviate the collapse issue
of AC-GAN.

B. Gradient Penalty for Classification-based
cGANs

We investigate whether gradient penalty will alleviate
early collapse. We chose AC-GAN [11], the currently
widely known classification-based cGAN, as the testbed,
and evaluate three gradient penalty methods: WGAN-
GP [4], WGAN-div [8], and R1 regularization [23]. Be-
cause cGANs are more likely to collapse when the num-
ber of categories is large, we evaluate them on CIFAR100
instead of CIFAR10. As shown in Fig. 2, none of the
three gradient penalty methods can prevent AC-GAN from
collapsing. We emphasize that computing gradient penal-
ties will introduce additional computational overhead dur-
ing GAN’s training, which is very unfriendly to large-scale
datasets such as ImageNet. However, weight decay effec-
tively alleviates the collapse problem without adding any
additional training overhead.

C. Improved AC-GAN (ImAC-GAN)

Auxiliary classifier GAN (AC-GAN) [11] uses an auxil-
iary classifier to enhance the standard GAN model. Its ob-
jective function consists of two parts: the GAN loss, LGAN,
and the classification loss, Lcls:

LGAN =E [logP (g = real | xreal)] +

E [logP (g = fake | xfake)] ,
(8)

Lcls = E [logP (g = c | xreal)] + E [logP (g = c | xfake)] ,
(9)

where g is a random variable denoting the class label and c
is the ground truth label of x. xreal and xfake represent a real
image and a generated image respectively. The discrimina-
tor D of AC-GAN is trained to maximize LGAN + Lcls, and
the generator is trained to maximize Lcls − LGAN.

The discriminator loss of AC-GAN is not optimal. We
give a slightly modified version below. Suppose the dataset

owns C categories, then the discriminator is trained to max-
imize

LD =LGAN+

E [logP (g = c | xreal)] + E [logP (g = C | xfake)] ,
(10)

where c ∈ {0, 1, . . . , C − 1} is the ground truth class label
of xreal, and g = C means that xfake belongs to the fake
class. To sum up, we use an additional class to represent
the generated image. In practice, this is achieved by setting
the dimension of the fully connected layer of the auxiliary
classification layer to be C + 1 rather than C.

The objective function of the generator is consistent with
that of the original AC-GAN, i.e., maximizing

LG = −LGAN + E [logP (g = cfake | xfake)] , (11)

where cfake is the class label used by the generator to gener-
ate xfake.

We name this improved version of AC-GAN ImAC-
GAN. As shown in the paper, ImAC-GAN is comparable to
Omni-GAN, both of which achieve superior performance
compared to projection-based cGANs. However, because
ImAC-GAN uses cross-entropy as the loss function for clas-
sification, it can only handle the case where the sample has
a positive label. Omni-GAN uses omni-loss, essentially
a multi-label classification loss, which naturally supports
handling samples with one positive label or multiple pos-
itive labels. We will give an example of generating images
with multiple positive labels in Sec. E.

D. Technical Details of Omni-INR-GAN
Learning image prior model is helpful for image restora-

tion and manipulation, such as denoising, inpainting, and
harmonizing. Deep generative prior (DGP) [12] showed
the potential of employing the generator prior captured by
a pre-trained GAN model (i.e., a BigGAN model trained on
a large-scale image dataset, ImageNet). However, BigGAN
can only output images with a fixed aspect ratio, limiting the
practical application of DGP. To make the pre-trained GAN
model more flexible for downstream tasks, we propose a
new GAN named Omni-INR-GAN, which can output im-
ages with any aspect ratio and any resolution.

Images are usually represented by a set of pixels with
fixed resolution. A popular method named implicit neural
representation (INR) is prevalent in the 3D field [13, 9, 2].
Recently, people introduced the INR method to 2D im-
ages [1, 16]. As shown in Fig. 3 (a), the INR of an image
directly maps (x, y) coordinates to image’s RGB pixel val-
ues. Since the coordinates are continuous, once we get the
INR of an image, we can get images of arbitrary resolutions
by sampling different numbers of coordinates.

Inspired by the local implicit image function (LIIF) [1],
we use INR to enhance Omni-GAN, with the goal of en-

(x, y)
(r,g,b)

z Backbone
(x, y) f

INR Net

Image of any

aspect ratio

Sampling

(a) Continuous image in INR form

(b) Generator of Omni-INR-GAN

M

Mx,y

Figure 3: (a) An example of an image represented in INR
form. A fully connected network maps coordinates (x, y) to
pixel values (r, g, b). (b) Using an INR network to enhance
the generator so that the generator can output images with
any resolution and any aspect ratio.

abling the generator to output images with any aspect ratios
and any resolution. We name our method Omni-INR-GAN.
As shown in Fig. 3 (b), we keep the backbone of the gen-
erator network unchanged and employ an INR network for
the output layer. Let M ∈ RC×H×W represent the out-
put feature map of the backbone, fθ be the implicit neural
function. Then the RGB signal at (x, y) coordinate is given
by s = fθ(Mx,y, x, y), where Mx,y stands for the feature
vector at (x, y). Note that since x and y can be any real
numbers, Mx,y may not exist in M . In such a case, we
adopt the bilinear interpolation of the four feature vectors
near (x, y) as the feature at (x, y).

Omni-INR-GAN can generate images with any aspect
ratio, so as to be more friendly to downstream tasks like im-
age restoration and manipulation. After trained on the large-
scale dataset ImageNet, Omni-INR-GAN can be combined
with DGP to do restoration tasks. Omni-INR-GAN elim-
inates cropping operations before image restoration, mak-
ing it possible to repair the entire image directly. Since
the generator has seen considerable natural images, utiliz-
ing the generator prior can facilitate downstream tasks sig-
nificantly.

E. An Example of Multi-label Discriminator
Omni-loss is essentially a multi-label classification loss

and naturally supports classification with multiple positive
labels. To verify the ability of Omni-GAN for generat-
ing samples with multiple positive labels, we construct a
mixed dataset containing images of digits from two dis-
tinct domains, namely MNIST [7] of handwritten digits and
SVHN [10] of house numbers. Some example images from
the datasets are shown in Fig. 4. In this setting, the discrim-
inator needs to predict three attributes, class (recognizing
digits), domain, and reality.

Let us take images of MNIST as an example, and show

how to set the loss for the discriminator. As for SVHN, the
case is analogous. Suppose xreal is an image sampled from
MNIST, its multi-label vector is given by

yreal = [−1, . . . , 1gt, . . . ,−1︸ ︷︷ ︸
class

, 1mnist,−1︸ ︷︷ ︸
domain

, 1real,−1︸ ︷︷ ︸
reality

], (12)

where −1 means the corresponding score belongs to the
negative set, and 1 to the positive set. As can be seen, yreal
possesses three positive labels. The multi-label vector for
xfake is then given by

yfake = [−1, . . . ,−1, . . . ,−1︸ ︷︷ ︸
class

,−1,−1︸ ︷︷ ︸
domain

,−1, 1fake︸ ︷︷ ︸
reality

], (13)

which is a one-hot vector with the last element being 1. The
discriminator loss is given by

LD =Exreal∼pd [Lomni (xreal,yreal)]

+ Exfake∼pg [Lomni (xfake,yfake)] .
(14)

For generator, its goal is to cheat the discriminator. The
multi-label vector for xfake is given by

y
(G)
fake = [−1, . . . , 1G, . . . ,−1︸ ︷︷ ︸

class

, 1mnist,−1︸ ︷︷ ︸
domain

, 1real,−1︸ ︷︷ ︸
reality

], (15)

where 1G is 1 if its index in the vector is equal to the label
adopted by the generator to generate xfake, otherwise −1.
The generator loss is given by.

LG = Exfake∼pg

[
Lomni

(
xfake,y

(G)
fake

)]
. (16)

We experimentally found that this multi-label discrimi-
nator can instruct the generator to generate images from dif-
ferent domains. Some generated images are shown in Fig. 5.
We must emphasize that this is only a preliminary experi-
ment to verify the function of the multi-label discriminator.
We look forward to applying the multi-label discriminator
to other tasks in the future, such as translation between im-
ages in different domains, domain adaptation, etc.

F. Additional Results on CIFAR
F.1. Over-fitting of the Discriminator

Karras et al. [6] found that the discriminator overfits the
training dataset, which will lead to incorrect gradients pro-
vided to the generator. Thus the training diverges. To verify
that the collapse of the projection-based cGAN is due to the
over-fitting of the discriminator, we plotted the scalar output
of the discriminator, D(x), over the course of training. We
utilized the test set of CIFAR100 containing 10, 000 images
as the verification set, which was not used in the training.

(a) MNIST (b) SVHN
Figure 4: Real images sampled from the dataset.

(a) MNIST (b) SVHN
Figure 5: Images generated by a generator which is guided
by a multi-label discriminator.

0.0 0.5 1.0 1.5 2.0 2.5
Real images shown to D 1e7

4

2

0

2

4

D
(x

)

0

50

100

150

200

250

300

350

FI
D

min FID=10.19

real generated validation FID

(a)

0.0 0.5 1.0 1.5 2.0 2.5
Real images shown to D 1e7

3

2

1

0

1

2

3

D
(x

)

0

50

100

150

200

250

300

350

FI
D

min FID=9.74

real generated validation FID

(b)
Figure 6: The raw logits of D(x) and the corresponding
FID score of a projection-based cGAN are plotted in the
same figure. The black dashed line indicates where the min-
imum FID is reached. (a) training without weight decay.
(b) training with weight decay. The figures of D(x) are
inspired by [6].

As shown in Fig. 6a, obviously, as training progresses,
the D(x) of the validation set tends to that of the gener-
ated images, substantiating that the discriminator overfits
the training data. We also plotted the FID curve in the
same figure. We can see that the training commences di-
verging when showing about 20M real images (i.e., around
400 epoch) to the discriminator. The best FID is obtained
when approximately 15M real images are shown to the dis-

0.0 0.5 1.0 1.5 2.0 2.5
Real images shown to D 1e7

0

10

20

30

40

50

FI
D

Projection
One-sided Omni-GAN
Omni-GAN

(a)

0.0 0.5 1.0 1.5 2.0 2.5
Real images shown to D 1e7

2

4

6

8

10

IS

Projection
One-sided Omni-GAN
Omni-GAN

(b)

Figure 7: One-sided Omni-GAN is on par with projection-
based BigGAN on CIFAR10, proving that one-sided Omni-
GAN indeed belongs to projection-based cGANs. Both of
them are inferior to the classification-based cGAN, Omni-
GAN.

criminator.
In Fig. 6b, we show the D(x) and FID after applying

weight decay to the projection-based discriminator. We can
find that although the discriminator still overfits the training
data, the training dose not collapse during the whole train-
ing process (the minimum FID, 9.74, is reached at the end
of the training).

F.2. Comparison of One-sided Omni-GAN and
Projection-based GAN on CIFAR10

We provide the results of one-sided Omni-GAN and
projection-based BigGAN on CIFAR10. As shown
in Fig. 7, one-sided Omni-GAN is comparable to the
projection-based BigGAN in terms of both FID and IS.
This proves that one-sided Omni-GAN indeed belongs to
projection-based cGANs. Both one-sided Omni-GAN and
projection-based BigGAN are inferior to Omni-GAN. Be-
cause the only difference between one-sided Omni-GAN
and Omni-GAN is whether the supervision is fully utilized,
we conclude that the superiority of Omni-GAN lies in the
full use of supervision.

F.3. Comparison with Multi-hinge GAN

Multi-hinge GAN belongs to classification-based
cGANs, and also suffers from the early collapse issue. We
study whether weight decay is effective for Multi-hinge
GAN. As shown in Fig. 8, original Multi-hinge GAN
suffers a severe early collapse issue. After equipped with
weight decay, Multi-hinge GAN enjoys a safe optimization
and its FID is even comparable to that of Omni-GAN.
However, its IS is worse than that of Omni-GAN.

Multi-hinge GAN combined with weight decay does not
always perform well. The results on CIFAR10 are shown
in Fig. 9. Weight decay deteriorates Multi-hinge GAN in
terms of both FID and IS. However, Omni-GAN outper-
forms Multi-hinge GAN. In addition, omni-loss is more
flexible than multi-hinge loss. It supports implementing a

0.0 0.5 1.0 1.5 2.0 2.5
Real images shown to D 1e7

5

10

15

20

25

30

FI
D

Multi-hinge
Multi-hinge + weight decay
Omni-GAN

(a)

0.0 0.5 1.0 1.5 2.0 2.5
Real images shown to D 1e7

2.5

5.0

7.5

10.0

12.5

IS

Multi-hinge
Multi-hinge + weight decay
Omni-GAN

(b)

Figure 8: FID and IS on CIFAR100. Weight decay can
eliminate the early collapse problem of Multi-hinge GAN
on CIFAR100.

0.0 0.5 1.0 1.5 2.0 2.5
Real images shown to D 1e7

5.0

7.5

10.0

12.5

15.0

17.5

20.0

FI
D

Multi-hinge
Multi-hinge + weight decay
Omni-GAN

(a)

0.0 0.5 1.0 1.5 2.0 2.5
Real images shown to D 1e7

4

5

6

7

8

9

10

IS

Multi-hinge
Multi-hinge + weight decay
Omni-GAN

(b)

Figure 9: FID and IS on CIFAR10. Weight decay deterio-
rates Multi-hinge GAN.

multi-label discriminator. As a result, we suggest first con-
sidering using Omni-GAN when choosing cGANs.

F.4. Comparison with Other Regularization Meth-
ods

0 20000 40000 60000 80000 100000

Iterations

10

20

30

40

50

FI
D

CR-BigGAN
CR-OmniGAN
ICR-BigGAN
ICR-OmniGAN
LO-BigGAN
LO-OmniGAN

0 20000 40000 60000 80000 100000

Iterations

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

IS CR-BigGAN
CR-OmniGAN
ICR-BigGAN
ICR-OmniGAN
LO-BigGAN
LO-OmniGAN

Figure 10: Results on CIFAR100. OmniGAN can be eas-
ily integrated with off-the-shelf methods and shows a con-
sistent and clear improvement, especially for the IS. wd:
weight decay.

It is very easy to combine Omni-GAN with other reg-
ularization methods, such as CR [26], ICR [27] and LO-
GAN [24]. As shown in Fig. 10, when combined with dif-
ferent methods, Omni-GAN is consistently better than Big-
GAN on CIFAR100. Note that unlike other experiments
which are based on BigGAN 1, the implementations of CR,

1https://github.com/ajbrock/BigGAN-PyTorch

ICR, and LOGAN are based on StudioGAN 2. FID and IS
are computed using 10K test and 10K generated Images.

Although CR and ICR are effective regularization meth-
ods, they introduce additional computational overhead. Ta-
ble 1 shows the properties of different regularization meth-
ods. Compared with other regularization, weight decay has
negligible computational overhead. Moreover, weight de-
cay is easily implemented by directly adjusting the opti-
mizer rather than defining a new term in the loss function,
thus it is computationally cheap.

Regularization GP[20] R1Reg[38] CR [68] ICR LO DataAug wd

Additional forward/backward 4 4 4 4
Second-order gradient 4 4

More iterations 4

Method BigGAN (baseline) OmniGAN w/ wd CR-BigGAN ICR-BigGAN LO-BigGAN

Time (seconds/1k iterations) 643 669 (+4.0%) 811 (+26.1%) 1429 (+122.2%) 5470 (+750.6%)

Table 1: Comparison of regularizations. The training time
is evaluated on CIFAR100. We refer to weight decay (wd)
as a ‘moderate’ regularization in that it increases negligible
training overhead compared to other regularizations.

F.5. Applying Weight Decay to the Generator

0.0 0.5 1.0 1.5 2.0 2.5
Real images shown to D 1e7

2.5

5.0

7.5

10.0

12.5

IS

Generator w/o weight decay
Generator w/ weight decay

Figure 11: Applying weight decay to the generator. Ap-
plying weight decay to the discriminator helps alleviate the
collapse issue, but the IS gradually decreases as the training
progresses. Applying weight decay to the generator simul-
taneously solves this problem. Experiments are conducted
on CIFAR100.

We found empirically that applying weight decay also
to the generator can make training more stable. As shown
in Fig. 11, although only applying weight decay to the dis-
criminator can avoid the risk of collapse earlier, the IS has
a trend of gradually decreasing as the training progresses.
Fortunately, applying weight decay (set to be 0.001 in our
most experiments) to the generator can solve this problem.
This phenomenon seems to indicate that the generator is
also at a risk of over-fitting.

2https://github.com/POSTECH-CVLab/PyTorch-StudioGAN

F.6. How to Set the Weight Decay?

We did a grid search for the weight decay on CIFAR
and found that its value is related to the size of the train-
ing dataset. For CIFAR100, there are only 500 images per
class, and the weight decay is set to be 0.0005. For CI-
FAR10, there are 5000 images per class, and the weight de-
cay is set to be 0.0001. For ImageNet, it is a large dataset
with a considerable number of training data (approximate
1.2M). The weight decay is set to 0.00001. The conclusion
is that the smaller the dataset, the higher the risk of over-
fitting for the discriminator. Then weight decay should be
larger.

F.7. Mathematical Explanation for Mode Collapse

During the paper review, a reviewer was interested in the
mathematical analysis of why weight decay contribute to
stabilize the training of cGANs. We provide a possible di-
rection for the mathematical analysis. FAR-GAN [19] pro-
vides a mathematical analysis on mode collapse of GANs.
In their opinion, there is an unbalanced generation and a vi-
cious circle issue during GAN’s training. Inspired by them,
we can similarly analyze why weight decay can alleviate
the training collapse of classification-based GANs. We will
provide the analysis in the arXiv version of the paper once
we have completed it.

G. Additional Results on ImageNet
We provide convergence curves on ImageNet 256×256.

As shown in Fig. 12, both Omni-GAN and Omni-INR-
GAN converge faster than BigGAN, proving the effective-
ness of combining strong supervision and weight decay.
Omni-INR-GAN clearly outperforms Omni-GAN, showing
its significant potential for future applications. In Fig. 13,
we show the tradeoff curve of these methods using the trun-
cation trick on ImageNet 256 × 256. Omni-INR-GAN is
consistently superior to Omni-GAN and BigGAN.

H. Application to Image-to-Image Translation
Omni-GAN can be used for image-to-image translation

tasks. We verify the effectiveness of Omni-GAN on se-
mantic image synthesis [21, 15]. In particular, we replace
the GAN loss of SPADE [14] with Omni-GAN’s loss, and
keep other hyper-parameters unchanged. The discriminator
is a fully convolutional network, which is widely adopted
by image-to-image translation tasks [14, 5, 22]. As shown
in Fig. 14, the discriminator takes images as input and out-
puts feature maps with the number of channels being C+2.
C represents the number of classes which is analogous to
that of the semantic segmentation task. 2 indicates there are
two extra feature maps representing to what extent the input
image is real or fake. We adopt nearest neighbor downsam-
pling to downsample the label map to the same resolution

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Real images shown to D 1e8

0

10

20

30

40

50

FI
D

BigGAN
Omni-GAN
Omni-INR-GAN

(a) FID on ImageNet 256× 256

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Real images shown to D 1e8

0

50

100

150

200

250

300

350

IS

BigGAN
Omni-GAN
Omni-INR-GAN

(b) IS on ImageNet 256× 256

Figure 12: FID and IS on ImgeNet 256 × 256. Omni-
GAN and Omni-INR-GAN converge faster than the
projection-based BigGAN. Omni-INR-GAN clearly outper-
forms Omni-GAN, showing its significant potential for fu-
ture applications.

50 100 150 200 250 300 350 400 450

IS

0

10

20

30

40

50

FI
D

BigGAN

Omni-GAN

Omni-INR-GAN

Figure 13: Tradeoff curves using truncation trick on Ima-
geNet 256×256. We show truncation values from σ = 0.05
to σ = 1 with step being 0.05. Omni-INR-GAN outper-
forms Omni-GAN and BigGAN.

as the output feature maps of the discriminator. Then we
use the downsampled label map as the ground truth label,
and apply a per-pixel omni-loss to the output feature maps
of the discriminator.

We use Cityscapes dataset [3] as a testbed, and train
models on the training set with size of 2, 975. The im-
ages is resized to 256 × 512. Models are evaluated by the
mIoU of the generated images on the test set with 500 im-
ages. We use a pre-trained DRN-D-105 [25] as the seg-
mentation model for the sake of evaluation. As shown in
Table 2, Omni-GAN improves the mIoU score of SPADE
from 62.21 to 65.07, substantiating that the synthesized im-
ages possess more semantic information. We believe that
the improvement comes from the improved ability of the
discriminator in distinguishing different classes, so that the
generator receives better guidance and thus produces im-
ages with richer semantic information.

SPADE [14]

road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
97.44 79.89 87.86 50.57 47.21 35.90 38.97 44.67 88.15 66.14

sky person rider car truck bus train motorcycle bicycle mIoU
91.61 62.27 38.67 88.68 64.96 70.17 41.42 28.58 58.86 62.21

+ Omni-GAN

road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
97.57 81.62 88.58 53.39 50.47 35.88 41.08 46.75 89.31 67.00

sky person rider car truck bus train motorcycle bicycle mIoU
92.14 63.97 41.99 89.91 71.06 74.21 56.16 33.99 61.23 65.07

Table 2: Semantic image synthesis using SPADE. Replacing the GAN used by SPADE with Omni-GAN can improve the
quality of synthesized images.

Input Image C+2 channels

Convolutional Discriminator

Label Map

Nearest Neighbor

Downsampling

Label Map

Nearest Neighbor

Downsampling

Per-pixel

Omni-loss

Per-pixel

Omni-loss

Figure 14: Combine omni-loss with a fully convolutional
discriminator whose outputs are feature maps. In the fig-
ure, the green and red feature maps represent scores that the
input images are real and fake, respectively. Omni-loss is
applied to the output feature maps pixel-by-pixel.

I. Application to Downstream Tasks
I.1. Colorization and Super-resolution

Deep generative prior (DGP) [12] showed the potential
of employing image prior captured by a pre-trained GAN
model. Our colorization and super-resolution schemes are
based on DGP. We first introduce the preliminary knowl-
edge of DGP.

Suppose x is a natural image and φ is a degradation
function, e.g., gray transform for colorization and down-
sampling for super-resolution. Then x̂ = φ(x) represents
the degraded image, i.e., a partial observation of the original
image, x. The goal of image restoration is to recoverx from
x̂ with the help of some statistical image prior of x. DGP
proposes employing the image prior stored in a pre-trained
GAN’s generator. The objective is defined as

θ∗, z∗ = argmin
θ,z

L(x̂, φ(G(z;θ))), (17)

where z is a noise vector. G represents the gen-
erator in GAN and is parameterized by θ. L is
a discriminator-based distance metric: L (x1,x2) =∑
i∈I ‖D (x1, i) , D (x2, i)‖1. D is the discriminator cou-

pled with G. I is a index set for feature maps of different
blocks of D. Note that both G and D have been trained on
a large-scale natural image dataset. DGP employs the prior
of G by fine-tuning θ and z. After fine-tuning, we get the
restored image x∗ = G(z∗;θ∗).

Although DGP has achieved noteworthy results in im-
age restoration and manipulation, it has limitations due to
the inflexibility of the pre-trained GAN model. For ex-
ample, if DGP adopts a 128 × 128 BigGAN model, DGP
must first crop the original image into image patch of size
128 × 128 before restoration, restricting its practical appli-
cation. However, because Omni-INR-GAN can output im-
ages of any resolution, combining it with DGP can directly
restore the original image.

We use Omni-INR-GAN pre-trained on ImageNet 256×
256 for colorization and super-resolution. Eq. (17) is the
objective. For colorization, x̂ is a grayscale image, and for
super-resolution, x̂ is a low-resolution image. We resize the
input image’s short edge to 256 and keep the aspect ratio of
the image unchanged. After fine-tuning, x∗ = G(z∗;θ∗)
is the restored image. Because G(z∗;θ∗) represents x∗ in
the INR form, we can get the restored image at any reso-
lution through G(z∗;θ∗). Therefore, Omni-INR-GAN is
more friendly to downstream tasks.

I.2. Reconstruction

We compare pre-trained GAN models for image recon-
struction tasks. Specifically, we finetune the parameters of
the generator to make it reconstruct given images. Note that
we do not use mse or L1 loss, because these loss functions
make it easy for the generator to overfit the given image,
as long as the training iterations are enough. Instead, we
only use the discriminator feature loss, because it has been
proven to be very effective for utilizing the prior of the gen-
erator. For the dataset, we use 1k images sampled from
the ImageNet validation set, which is the same as DGP’s
choice. Note that these data have not been used in GAN’s
training. We adopt the progressive reconstruction strategy
of DGP [12], and finetune each GAN model for the same
number of iterations.

J. Implementation Details

We adopt BigGAN architectures of 128×128 and 256×
256 in our experiments. Table 3, 4, 5, and 6 show the ar-
chitectural details. Each experiment is conducted on eight
v100 GPUs. Training Omni-GAN on ImageNet 128 × 128
and 256×256 took 25 days and 60 days, respectively. Train-
ing Omni-INR-GAN on ImageNet 128×128 and 256×256
took 27 days and 87 days, respectively. No collapse oc-
curred during the entire training process. We have found
experimentally that classification-based cGANs cannot set
a large batch size like projection-based BigGAN. For all ex-
periments of Omni-GAN and Omni-INR-GAN, the batch
size is set to 256. We adopt the ADAM optimizer in all
experiments, with betas being 0 and 0.999. The learning
rates of the generator and discriminator are set to 0.0001
and 0.0004, respectively.

For 128 × 128 experiments, the generator and discrimi-
nator use non-local block at 64×64 resolution. The genera-
tor is updated once every time the discriminator is updated.
The weight decay of the generator and discriminator are set
to 0.001 and 0.00001, respectively. For Omni-INR-GAN,
we removed the non-local block at 64×64 resolution of the
discriminator. Because when Omni-INR-GAN is used for
downstream tasks, the input image of the discriminator may
be of any size, so the middle layer of the discriminator may
not output 64× 64 resolution features. Moreover, although
Omni-INR-GAN can generate images of any resolution, we
did not adopt a multi-scale training strategy. We found that
multi-scale training led to training collapse. We think that a
possible reason is that multi-scale training enhances the dis-
criminator, resulting in the ability of the generator and the
discriminator to be out of balance. Thus we only generate
128 × 128 images during training, and the real images are
also resized to 128× 128.

For 256×256 experiments, the weight decay of the gen-
erator and discriminator are set to 0.0001 and 0.00001, re-
spectively. The generator is updated once every time the
discriminator is updated twice. We have found experimen-
tally that this will make training more stable. The generator
and discriminator use non-local block at 64 × 64 resolu-
tion rather than 128 × 128 due to limited GPU memory.
For Omni-INR-GAN, in order to support downstream tasks
friendly, we do not use non-local block in the discriminator.
Moreover, due to GPU memory limitation, we reduce the
batch size to 128 and accumulate the gradient twice to ap-
proximate the gradient when the batch size is 256. We did
not adopt a multi-scale training strategy. Only 256 × 256
images are generated during training, and the real images
are also resized to 256× 256.

Figure 15: Randomly generated image by Omni-GAN for
CIFAR10

K. Additional Results
K.1. Generated Images on CIFAR

In Fig. 15 and 16, we show generated images from
Omni-GAN on CIFAR10, CIFAR100 respectively. Due to
limited space, we only show images of some categories on
CIFAR100.

K.2. Generated Images on ImageNet

Omni-INR-GAN inherently supports generating images
of arbitrary resolution. We adopt the Omni-INR-GAN
256 × 256 model to generate some images with different
resolutions, e.g., Fig. 17, 18, etc.

K.3. Results of Semantic Image Synthesis

In Fig. 36, we show several results of Omni-GAN as well
as those of SPADE for semantic image synthesis. The la-
bel maps and the ground truth images are from the first ten
items in the test set of Cityscapes dataset, without cherry-
picking.

z ∈ R120 ∼ N (0, I), embed(y) ∈ R128

Linear 20→ 4× 4× 16ch

ResBlock up 16ch→ 16ch

ResBlock up 16ch→ 8ch

ResBlock up 8ch→ 4ch

ResBlock up 4ch→ 2ch

Non-local Block (64× 64)

ResBlock up 2ch→ ch

BN, ReLU, 3× 3 Conv ch→ 3

Tanh

(a) Generator

RGB image x ∈ R128×128×3

ResBlock down 3→ ch

Non-local Block (64× 64)

ResBlock down ch→ 2ch

ResBlock down 2ch→ 4ch

ResBlock down 4ch→ 8ch

ResBlock down 8ch→ 16ch

ResBlock 16ch→ 16ch

ReLU, global sum pooling

Linear→ 1002

(b) Discriminator

Table 3: Omni-GAN architecture on ImageNet 128× 128. ch is set to be 96.

z ∈ R120 ∼ N (0, I), embed(y) ∈ R128

Linear 17→ 4× 4× 16ch

ResBlock up 16ch→ 16ch

ResBlock up 16ch→ 8ch

ResBlock up 8ch→ 8ch

ResBlock up 8ch→ 4ch

Non-local Block (64× 64)

ResBlock up 4ch→ 2ch

ResBlock up 2ch→ ch

BN, ReLU, 3× 3 Conv ch→ 3

Tanh

(a) Generator

RGB image x ∈ R256×256×3

ResBlock down 3→ ch

ResBlock down ch→ 2ch

Non-local Block (64× 64)

ResBlock down 2ch→ 4ch

ResBlock down 4ch→ 8ch

ResBlock down 8ch→ 8ch

ResBlock down 8ch→ 16ch

ResBlock 16ch→ 16ch

ReLU, global sum pooling

Linear→ 1002

(b) Discriminator

Table 4: Omni-GAN architecture on Imagenet 256× 256. ch is set to be 96.

z ∈ R120 ∼ N (0, I), embed(y) ∈ R128

Linear 20→ 4× 4× 16ch

ResBlock up 16ch→ 16ch

ResBlock up 16ch→ 8ch

ResBlock up 8ch→ 4ch

ResBlock up 4ch→ 2ch

Non-local Block (64× 64)

ResBlock up 2ch→ ch

Unfold(kernel size=3) ch→ 9ch

Grid sample(x, y), Concat feature and (x, y)

Linear, Relu 9ch+ 2→ ch

Linear, Relu ch→ ch

Linear ch→ 3

Tanh

(a) Generator

RGB image x ∈ R128×128×3

ResBlock down 3→ ch

ResBlock down ch→ 2ch

ResBlock down 2ch→ 4ch

ResBlock down 4ch→ 8ch

ResBlock down 8ch→ 16ch

ResBlock 16ch→ 16ch

ReLU, global sum pooling

Linear→ 1002

(b) Discriminator

Table 5: Omni-INR-GAN architecture on ImageNet 128× 128. ch is set to be 96.

z ∈ R120 ∼ N (0, I), embed(y) ∈ R128

Linear 17→ 4× 4× 16ch

ResBlock up 16ch→ 16ch

ResBlock up 16ch→ 8ch

ResBlock up 8ch→ 8ch

ResBlock up 8ch→ 4ch

Non-local Block (64× 64)

ResBlock up 4ch→ 2ch

ResBlock up 2ch→ ch

Unfold(kernel size=3) ch→ 9ch

Grid sample(x, y), Concat feature and (x, y)

Linear, Relu 9ch+ 2→ ch

Linear, Relu ch→ ch

Linear ch→ 3

Tanh

(a) Generator

RGB image x ∈ R256×256×3

ResBlock down 3→ ch

ResBlock down ch→ 2ch

ResBlock down 2ch→ 4ch

ResBlock down 4ch→ 8ch

ResBlock down 8ch→ 8ch

ResBlock down 8ch→ 16ch

ResBlock 16ch→ 16ch

ReLU, global sum pooling

Linear→ 1002

(b) Discriminator

Table 6: Omni-INR-GAN architecture on Imagenet 256× 256. ch is set to be 96.

Figure 16: Randomly generated image by Omni-GAN for
CIFAR100

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 17: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 18: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 19: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 20: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 21: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 22: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 23: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 24: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 25: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 26: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 27: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 28: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 29: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 30: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 31: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 32: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 33: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

32× 32 64× 64 128× 128 256× 256

512× 512 1024× 1024

Figure 34: Samples generated by our Omni-INR-GAN 256×256 model. Omni-INR-GAN has the ability to generate images
of any resolution.

Size (256× 336) Size (32× 42) ×1 (32× 42) ×4.6 (147× 193) ×63.5 (2032× 2667)
(a) Ground truth (b) Input (c) LIIF

×8 (256× 320) ×8 (256× 256) ×1 (32× 42) ×4.6 (147× 193) ×63.5 (2032× 2667)
(d) DIP (e) DGP w/ BigGAN (f) DGP w/ Omni-INR-GAN (ours)

Figure 35: Super-resolution using Omni-INR-GAN’s prior, at any scale (×1-×60+). (b) input image with low resolution.
(c) LIIF [1] can extrapolate the input image to any scale, but it cannot add semantic details, so the result is still blurred. (d)
DIP [20] also failed because the input image resolution is too low. (e) DGP [12] with BigGAN must crop the input and
upsamples the cropped patch to a fixed size, which is inflexible. (f) Omni-INR-GAN has the ability to upsample the input
image to any scale and also adds rich semantic details.

Label Ground Truth SPADE Ours

Figure 36: Results of semantic image synthesis on Cityscapes.

References
[1] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning Con-

tinuous Image Representation with Local Implicit Image
Function. arXiv:2012.09161 [cs], 2020. 3, 22

[2] Zhiqin Chen and Hao Zhang. Learning Implicit Fields for
Generative Shape Modeling. arXiv:1812.02822 [cs], 2019.
3

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In CVPR,
2016. 7

[4] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. In NeurIPS, 2017. 3

[5] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-Image Translation with Conditional Adver-
sarial Networks. In CVPR, 2017. 7

[6] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training Generative Ad-
versarial Networks with Limited Data. arXiv:2006.06676
[cs, stat], 2020. 4, 5

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner,
et al. Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11), 1998. 4

[8] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for GANs do actually Converge? In
ICML, 2018. 3

[9] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy Net-
works: Learning 3D Reconstruction in Function Space.
arXiv:1812.03828 [cs], 2019. 3

[10] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011. 4

[11] Augustus Odena, Christopher Olah, and Jonathon Shlens.
Conditional Image Synthesis With Auxiliary Classifier
GANs. arXiv:1610.09585 [cs, stat], 2017. 3

[12] Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin,
Chen Change Loy, and Ping Luo. Exploiting Deep Genera-
tive Prior for Versatile Image Restoration and Manipulation.
In ECCV, 2020. 3, 8, 22

[13] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
Continuous Signed Distance Functions for Shape Represen-
tation. arXiv:1901.05103 [cs], 2019. 3

[14] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic Image Synthesis with Spatially-Adaptive
Normalization. In CVPR, 2019. 7, 8

[15] Xiaojuan Qi, Qifeng Chen, Jiaya Jia, and Vladlen Koltun.
Semi-parametric Image Synthesis. In CVPR, 2018. 7

[16] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elho-
seiny. Adversarial Generation of Continuous Images.
arXiv:2011.12026 [cs], 2020. 3

[17] Jianlin Su. Extending Cross-Entropy of Softmax to Multi-
Label Classification. https://kexue.fm/archives/7359, 2020.
1

[18] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang,
Liang Zheng, Zhongdao Wang, and Yichen Wei. Circle Loss:
A Unified Perspective of Pair Similarity Optimization. In
CVPR, 2020. 1, 2

[19] Song Tao and Jia Wang. Alleviation of Gradient Exploding
in GANs: Fake Can Be Real. In CVPR, 2020. 7

[20] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Deep Image Prior. arXiv:1711.10925 [cs, stat], 2018. 22

[21] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,
Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-
Video Synthesis. In NeurIPS, 2018. 7

[22] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-Resolution Im-
age Synthesis and Semantic Manipulation with Conditional
GANs. In CVPR, 2018. 7

[23] Jiqing Wu, Zhiwu Huang, Janine Thoma, Dinesh Acharya,
and Luc Van Gool. Wasserstein divergence for gans. In
ECCV, 2018. 3

[24] Yan Wu, Jeff Donahue, David Balduzzi, Karen Simonyan,
and Timothy Lillicrap. LOGAN: Latent Optimisation for
Generative Adversarial Networks. arXiv:1912.00953 [cs,
stat], 2019. 6

[25] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated
Residual Networks. In CVPR, Honolulu, HI, 2017. 7

[26] Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak
Lee. Consistency Regularization for Generative Adversarial
Networks. In ICLR, 2020. 6

[27] Zhengli Zhao, Sameer Singh, Honglak Lee, Zizhao Zhang,
Augustus Odena, and Han Zhang. Improved Consistency
Regularization for GANs. In AAAI, 2021. 6

