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In this document, we first formulate the process of the
back-propagation of saliency evaluation, and then provide
more detailed experimental results in terms of both qualita-
tive and quantitative evaluations.

1. Back-propagation of Saliency evaluation
During the end-to-end training of our whole model, the

gradients are back-propagated to the similarity maps S
through two parallel paths in the Saliency Mining module:
the path through the Saliency Evaluator and the path di-
rectly backward to S in Figure 2. Here, we show the back-
propagation for one channel of similarity map S(u,v) for
the pixel located at (u, v) in Fx. We denote S(u,v) as E for
simplicity, and then the normalized similarity map by the
saliency score s(E) is E′ = s(E) · E, where s(E) is the
saliency score obtained by our Saliency Evaluator:

s(E) = γ(E)[c(E)]α + λgµg,σg
(u, v). (1)

Thus we aim to back-propagate the gradient of E′ w.r.t. E:
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where ∂L
∂E′ is the gradient from the loss L. In Eq. 2, the first

term corresponds to the gradient in the path directly back-
propagated to E, while the second term corresponds to the
path through the Saliency Evaluator. Since c(E) in Eq. 1
is not differentiable w.r.t. E (check the calculation of c(E)
in the paper), we ignore the gradients of c(E) w.r.t. E, and
then the gradients of s(E) w.r.t E, ∂s(E)

∂E , are calculated by:
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Herein ∂max(E)
∂E , ∂µΦ

∂E , and ∂σΦ

∂E can be readily obtained by
the built-in Pytorch implementations. So far it has been
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shown how to calculate the gradient of E′ w.r.t. E and how
the whole model can be trained in an end-to-end manner.

2. More Qualitative Studies

To give more insights into our method, we visualize the
correlation representations produced by our SAOT and four
variants (DW-Corr, PG-Corr, PPFM, and PAM) described in
Section 4.2 in the manuscript. Figure 1 compares the corre-
lation features and the bounding boxes on four challenging
sequences. It shows that PAM is able to generate more pre-
cise and smooth correlation features than those by PPFM,
and our SAOT further improves the precision of the corre-
lation features for reflecting target states and the robustness
to distractors compared with PAM. These comparisons vi-
sually demonstrate the effectiveness of the proposed asso-
ciation modeling method and the saliency mining mecha-
nism. Besides, the proposed SAOT is able to learn more pre-
cise correlation features than those computed by DW-Corr
and PG-Corr. As a result, our SAOT predicts more precise
bounding boxes than those by the other four variants.

3. More Quantitative Results

In this section, we provide more detailed quantitative
results including 1) the precision and success plots on the
NFS30 [9] dataset; 2) the attribute-based plots in terms of
success on the OTB2015 [14] dataset; 3) the attribute-based
plots in terms of success on the testing set of LaSOT [6].

3.1. NFS30

The NFS [9] dataset has a 240 FPS version (NFS240)
and a 30 FPS version (NFS30). We evaluate the proposed
SAOT on the 30 FPS version. Figure 2 shows the preci-
sion and success plots of our SAOT and four representative
state-of-the-art trackers, including KYS [2], PrDiMP [5],
DiMP [1], and SiamBAN [3]. The proposed algorithm
achieves the best performance in terms of both precision
and success.
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Figure 1. Qualitative comparison between DW-Corr, PG-Corr, PPFM, PAM, and SAOT on four challenging tracking sequences (left
two with deformation and the other two with distractors). Our SAOT can learn more precise correlation features than those produced
by the other four variants. Consequently, our SAOT predicts more precise bounding boxes than those estimated by the other four variants.

0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2. Precision and success plots of different tracking algo-
rithms on the NFS30 dataset.

3.2. OTB2015

Figure 3 shows the attribute-based success plots on the
OTB2015 dataset. The attributes include deformation, oc-
clusion, out-plane rotation, in-plane rotation, scale varia-
tion, background clutter, fast motion, illumination varia-
tion, low resolution, out of view, and motion blur. The
methods involved in the comparisons include Ocean [15],

KYS [2], PrDiMP [5], DiMP [1], GradNet [12], ATOM [4],
GCT [8], SiamRPN++ [10], and SiamRPN [11]. The pro-
posed method performs favorably against the state-of-the-
art tracking algorithms on these challenging attributes. In
particular, our SAOT achieves performance gains of 1.8%
and 2.8% compared with the second-best trackers (KYS and
SiamRPN++) on the attributes of deformation and occlu-
sion, respectively.

3.3. LaSOT

Figure 4 shows the attribute-based success plots on the
test set of LaSOT [6]. The annotated attributes include de-
formation, partial occlusion, rotation, scale variation, aspect
ratio change, background clutter, viewpoint change, out of
view, full occlusion, illumination variation, low resolution,
motion blur, fast motion, and camera motion. The tracking
algorithms involved in the comparisons include Ocean [15],
KYS [2], PrDiMP [5], SiamBAN [3], DiMP [1], ATOM [4],
SiamRPN++ [10], SPM [13], and C-RPN [7]. Our SAOT
performs well on these challenging attributes.
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Figure 3. Success plots over different attributes on the OTB2015 dataset. From top left to bottom right, the figures are with the
challenges of deformation, occlusion, out-plane rotation, in-plane rotation, scale variation, background clutter, fast motion, illumination
variation, low resolution, out of view, motion blur, respectively. The last figure shows the overall performance. The proposed approach
performs favorably against the state-of-the-art methods on these challenging attributes.
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Figure 4. Success plots over different attributes on the test set of LaSOT. From top left to bottom right, the figures are with the
challenges of deformation, partial occlusion, rotation, scale variation, aspect ratio change, background clutter, viewpoint change, out of
view, full occlusion, illumination variation, low resolution, motion blur, fast motion, and camera motion, respectively. Our SAOT performs
well on these challenging attributes.
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