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1. Network Architecture Details

Our reconstruction network including two encoder paths
(motion path and texture path) and one decoder path, which
is based on an U-Net like architecture [21]. The event flow
and spike flow are first transformed as the size of 32×400×
256 and followed by 3 encoder layers, 2 residual blocks, 3
decoder layers, and a final image prediction layer (NE =
ND = 3, NR = 2).

For a more intuitive understanding, we use the following
operation sequences to represent the network:

x0m = Tevent(fevent) (1)
x0t = Tspike(fspike) (2)
xi+1
m = E i+1

m ( xi
m) (3)

xi+1
t = E i+1

t ( xi
t) (4)

rj+1 = Rj( rj), where r0 = xNE
t ⊕ xNE

m (5)
dl+1 = Dl+1(dl) (6)
Î = σ(P(dND )) (7)

where Tevent and Tspike are the transformers proposed in
Section 4.1. E im and E it are the encoders of the motion path
and texture path, respectively. Rj is the j-th residual block.
Dl and P denote the l-th decoder layer and prediction lay-
er, respectively. σ denotes the tanh function, and ⊕ the
element-wise sum. And we have 0 ≤ i < NE , 0 ≤ j < NR

and 0 ≤ l < ND.
Specifically, dl is defined as

dl =


rNR , if l = 0

F(xNR−l
m , xNR−l

t )� dl−1, if 1 ≤ l < NR

(x0t ⊕ (w · x0
m))� dNR−1, if l = NR

(8)

where � denotes the channel-wise concatenation, F refers
to the proposed feature fusion module.

The encoders are strided convolutional layers (stride of
2), with a kernel size of 3. The number of output channel of
the first encoder layer is 64, and is doubled for every sub-
sequent encoder layer, i.e. the sequence of output channels
is (64, 128, 256). Meanwhile, the size of the output feature
is divided by 2 for every encoder layer, i.e. the input size

is 400 × 256, the sizes of the output of each encoder are
200× 128, 100× 64, and 50× 32, respectively.

As shown in Eq. (8), in the first and second encoder lay-
ers, the features of motion and texture paths are first fused
by a feature fusion module, then symmetric skip connec-
tions are used. Meanwhile, the transformed event flow and
spike flow are fused by element-wise sum in input layer and
skip connect to the last decoder layer. The feature of motion
path is multiplied by a weight before the element-wise sum,
where the weight is set to 1 on simulated data and the max
value of event integration on real data, respectively. The
skip connections are based on concatenation. Both resid-
ual blocks have a kernel size of 3. Instance normalization
is used within the encoders, decoders, and residual blocks
(applied before the ReLU activation). In the last image pre-
diction layer, a tanh activation is used instead of ReLU. The
decoders are transposed convolution layers, with a kernel
size of 3. The number of output channels of the decoder-
s starts at 128, and is divided by two for every subsequent
decoder, the channel number of the last decoder is 32. The
proposed network can also work with only texture paths and
decoders, which can be driven by spike data.

2. Related Works
To simulate some of the properties of the human reti-

na, researchers in the neuromorphic field are committed to
developing new bio-inspired vision sensors and the corre-
sponding image reconstruction methods.

Event Camera. To simulate biological vision, one of
the most famous artificial silicon retinas is the dynamic
vision sensor (DVS) [7, 1]. It is capable of high speed
detection and tracking [26, 27, 28]. However, as it on-
ly cares about the relative change of luminance intensity,
it is very difficult to reconstruct the texture. To solve this
problem, some event-based sensors were developed subse-
quently, by combining DVS and conventional image sensor
(DAVIS) [3], or adding an extra photo-measurement circuit
such as ATIS [19] and CeleX [10], but there exists a mo-
tion mismatch due to the difference of the sampling time
resolution between two kinds of heterogeneous circuits.

Spike Camera. To explore the different sampling mech-
anism, there are a number of spiking image sensors fol-
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lowing the basis of the integrate-and-fire neuron mod-
el [29, 13, 5, 24]. The in-pixel light measurement circuit
in ATIS [19] is also a kind of spiking image sensors, but
it is driven by DVS circuit. Additionally, some variants
of spiking image sensors such as asynchronous pixel event
tricolor vision sensor [14] and near infrared spiking image
sensor [2] were also proposed in recent years. Recently,
Dong et al. [8, 32] proposed a spike camera based on fovea-
like sampling method, which is with high spatial (250×400)
and temporal resolutions (40,000 Hz). Moreover, there is a
portable spike camera, also known as the Vidar, with a sam-
pling rate of 20,000 Hz.

Image reconstruction from neuromorphic cameras.
Many algorithms were designed to reconstruct texture im-
ages using DVS [22, 15]. By transforming the event da-
ta into the voxel grid, the image can be reconstructed by
the convolutional neural networks [20, 23, 25]. Moreover,
more event-based reconstruction tasks such as reconstruc-
tion in dark scenes [30] and event-based super resolution
reconstruction [4] were proposed in recent years. There are
also some algorithms combine APS and DVS to reconstruct
texture images [17, 18, 16], which can obtain better texture
information than only using the DVS signal.

As for the spike camera, the spike firing frequency or in-
terspike interval reflects the luminance variation which can
be used to compute the intensity value [32]. Recently, a
fovea-like texture reconstruction framework was proposed
to reconstruct images [33]. Further more, some methods
based on the spike camera were developed for tone map-
ping [31] and motion deblurring [11]. In this work, to
solve the problem of combination of spike and event data
and improve the reconstruction quality, we propose a nov-
el learning-based model to reconstruct high quality texture
images in complex scenes.

3. Details of Simulated Spike and Event
Dataset

3.1. Noise Analysis

In Section 3.3 of our paper, two typical types of noise
have been analyzed. Here we design an experiment to es-
timate the fixed pattern noise. In the experiment, we use a
spike camera to record a completely dark scene (see Figure
1(a)). To make sure no light enters the camera, we cover the
spike camera with a lens cap. The spike data recorded by
the spike camera is shown in Figure 1(b). Obviously, due
to the fixed pattern noise, the camera emits spikes even no
light enters. In order to summarize the rule of spike emis-
sion at this time, we use 3.6 seconds of spike data to plot
the distribution of ISI (inter-spike interval) of all pixels. As
shown in Figure 1(c), the ISI distribution can be fitted by a
Gaussian distribution with the mean value of 180 and vari-
ance of 50. This can guide us to generate more realistic

Figure 1. The distribution of fixed pattern noise. (a) The experi-
ment is conducted in a completely dark scene. (b) A spike plane
in 1/20,000 second. Spikes are still emitted in the absence of light.
(c) The distribution of ISI in this scene, which can be approximate-
ly fitted by a Gaussian distribution.

simulation data. To better simulate the spike data, we use
Eq. (13) in our paper and the noise matrix N in Algorithm
1 to model the multiple kinds of noise.

3.2. Spike Data Simulator

Our network requires training data including event flow,
spike flow, and corresponding ground truth images. How-
ever, the ground truth images are usually difficult to obtain.
One feasible solution is to train the network using the sim-
ulated spike and event data. In our work, we use the videos
in Object Tracking Evaluation category of KITTI dataset[9]
to generate the simulated data. The process of generating
simulated data is shown in Figure 2.

First, the videos are converted into luma frames, then we
adopt the Super-SLoMo video interpolation network [12] to
increase the frame rate of the video. In our dataset, the av-
erage upsampling ratio is 750. The original 30 FPS videos
are upsampled to about 22,500 FPS, which is similar to the
sampling frequency of a spike camera (Vidar is with 20,000
Hz sampling rate).

Then we generate the event and spike data from the up-
sampled videos, respectively. The groundtruth image is
obtained from the origin videos to ensure they are clear.
The event data is generated by the recent DVS simulator
V2E [6], while the spike data is generated according to the
sampling mechanism of spike camera.

The details of the generator are summarized in Algorith-
m 1. The input parameters include the motion scales S,
the light intensity scales L. Specifically, the motion scales
S refer to the number of upsampled frames used to gen-



Figure 2. The pipeline of generating simulated spike and event data. The input low frame rate video (30 FPS) is upsampled to about 20,000
FPS. Based on the high frame rate video, the spike data and event data are generated according to Algorithm 1.

erate spike data with length T . In our experiment, we set
S = {16, 32, 64, 128, 256} and T = 256. Different motion
speeds can be simulated by changing S. For example, if
we set S = 16, then the generator will use 16 upsampled
frames to generate 256 spike planes, which is equivalen-
t to slow motion. If we set S = 256, then fast motion is
simulated. The light intensity scales L change the spike fre-
quency by adjusting the integral contribution of each pixel
gray value. We set L = {1/2, 1/4, 1/8, 1/16, 1/32} in our
dataset. By setting a small L, the generated spikes can be
more sparse to simulate the scene with weak light intensity.
For the event data, we also change the contrast threshold to
simulate different light intensities. Thus, during the train-
ing process, a simulated event sequence corresponds to 25
simulated spike sequences (5 different light scales times 5
different motion scales) and a groundtruth image.

4. Details of Real World Dataset

4.1. Spike and Event Calibration

Inspired by [11], we build a hybrid camera system (see
Figure 11) consisting of a spike camera (Vidar), an event
camera (DAVIS 346), and a beam splitter. Two cameras can
record the same scene through the beam splitter. To ensure
the consistency of spike and event data both in the temporal
and spatial domain, a calibration step is needed. The details
of the two neuromorphic cameras registration are described
as follows:
[Spatial calibration (SC)] First, to ensure the SC parame-
ters are unchanged, we fix the beam splitter and camera lens
through the customized adapter rings. Then, a checkerboard
is captured by the camera system to make a full view. S-
ince this scene is static, we directly use the APS images and
the reconstructed textures (using TFI method) from Vidar
to calculate the SC parameters (i.e., a homography matrix).
An affine transformation is performed to connects two sets
of coordinates as [xsi , y

s
i , 1]

T = H[xei , y
e
i , 1]]

T .

Algorithm 1 Simulated Spike and Event Data Generator.
Input: A frame fori in original video and its timestamp tfori ,

the temporal upsampled video Vup, the light intensity scales
L, the motion scales S and the output spike data length T .

Output: The simulated spike data fspike ∈ Rm×n×T , asyn-
chronous event data fevent and groundtruth g ∈ Rm×n.

1: Initialize: The noise matrix N ∈ Rm×n subject to N (0, 1),
the integrator I ∈ Rm×n

2: for each motion scale Sj in S do
3: F ← Sj frames in Vup according to tfori
4: for each light scale Li in L do
5: I ← N · φ
6: for each frame Fk in F do
7: for iter in range(bT/Sjc) do
8: I ← I + Fk · Li

9: Generating spike plane fplane ∈ Rm×n by com-
paring I and φ

10: fspike ← fspike ∪ fplane

11: I ← I − fplane · φ
12: end for
13: end for
14: Output the simulated spike data fspike with light scale Li

and motion scale Sj

15: Clear fspike
16: end for
17: Generating event data using Sj frames by V2E simulator.
18: Output the simulated event data fevent with motion scale

Sj .
19: Output the groundtruth g← fori with motion scale Sj .
20: end for
21: end

[Temporal calibration (TC)] A coarse TC step is first re-
alized using a synchronization script to trigger the sampling
software of two cameras simultaneously. Then, a fine TC
step is needed to ensure the time accuracy in microsecond-
s for high-speed scenes: We transform the event and spike
data into event frames (e.g., 500 µs events for the driving
scene) and texture images (with 20,000 Hz). By manually



Table 1. The details of our real world spike and event dataset.
Scene Seq. number Time length Spike number Event number Description

Outdoor Driving1 2 2 × 2 s 204411034 9848112 Low light
Driving2 2 2 × 2 s 742923817 3783720 HDR/normal
Walking 1 2 s 572464038 10663676 HDR/low light
Person 1 2 s 643442363 5294827 Low light
Roof 1 1.4 s 1270146167 335494 High light

High-speed Rotation (light condition1) 5 5 × 0.5s 92266915 12307410 High speed (five speeds from 500 - 2600 RPM)
Rotation (light condition2) 5 5 × 0.5s 77361295 11052540 High speed (five speeds from 500 - 2600 RPM)

comparing them, fine-tuning of the timestamp is performed
to achieve the fine TC.

The spatio-temporal accuracy is sufficient for image re-
construction after SC and TC steps.

4.2. Real World Dataset

We construct a real world dataset including 15 sequences
with different light conditions, which consists of 5 outdoor
scenes and 10 ultra high speed fan scenes (the fan with
speeds from 500 RPM to 2600 RPM). The details of the
dataset are shown in Table 1. More results on the real world
dataset can be found in this document and our supplemen-
tary video. The dataset will be released later.

5. More Results and Discussions
5.1. Additional Results

The number of parameters and runtime are shown in Ta-
ble 2. To test the performance under noise conditions, we
conduct experiments on simulated data (‘0001’ of KITTI
dataset). For event data, we add the shot noise via V2E
simulator. For spike data, we adjust the standard deviation
σ to simulate different FPN. We test three different noise
levels: small (0.001 HZ shot noise for event data, σ=10 for
spike data), medium (10Hz, σ=50), high (100Hz, σ=90).
The noise greatly affects the reconstruction of E2VID and
TFI, especially at high noise levels. Our method is less af-
fected by noise.

Table 2. The inference time comparison on GPU and CPU.
Resolution GPU (ms) CPU (ms)

E2VID FireNet Ours E2VID FireNet Ours
240×180 6.15 2.21 10.31 116.14 25.57 68.35
346×260 11.13 3.48 17.53 207.34 51.39 120.34
400×250 14.33 4.02 22.49 227.14 55.84 140.12
640×480 28.46 10.25 51.55 630.41 210.6 473.46
∗ Test on NVIDIA Titan Xp GPU and Intel 2.2GHz E5-2630 CPU.
∗ Number of parameters: E2VID 10700k, FireNet 38k, Ours 5985k.

In order to compare our method with state-of-the-art
spike and event-based image reconstruction methods, we

Table 3. Quantitative comparison on different noise levels.
Noise level PSNR SSIM

E2VID TFI Ours E2VID TFI Ours
Small 14.76 21.76 26.07 0.6463 0.6911 0.8578

Medium 13.68 21.03 25.84 0.5381 0.6395 0.8503
High 11.03 18.56 25.48 0.3068 0.5259 0.8009

∗ E2VID: event, TFI: spike, Ours: spike+event.

conduct experiments on our simulated dataset. We compare
our method with TFP [32] (including four different recon-
struction window sizes), TFI [32], SNM [33], FireNet [23],
and E2VID [20]. The former three methods are based on
spike data, while the latter two methods are based on event
data. There are two experiments on simulated data: we first
fix the motion speed scale S = 128 and change the light
intensity scales L from 1/32 to 1/2 (see Figure 3). Then, we
fix L to 1/4, and change S from 16 to 256. The comparing
results are presented in Figure 3 and 4. It clearly shows that
our method can combine the advantages of spike and even-
t data, and thus generate higher quality images with clear
motion details and less noise.

Figure 5 provides results on the real dataset. Our method
performs well in HDR and low light scenes. Compared
with other methods, our method performs well by combin-
ing spike and event data.

We also test spike version of our network (the en-
coder only contains texture path) on the PKU-Spike-Recon
dataset [33]. This dataset is captured under ideal light con-
ditions for the spike camera, i.e. high light intensity. Our
method has a good performance on these scenes. As shown
in Figure 6, our method achieves better image quality in this
dataset. The motion details are better reconstructed while
the noise is suppressed.

5.2. Discussions

Generally speaking, with the ideal illumination, the spike
camera has the ability to record full texture information with
high speed. However, the spike camera very relies on light
intensity. If the light intensity is insufficient, the spike emit-
ted by the spike camera will be very sparse, resulting in the
reduction of effective signal (most signals are “0”) and the
increase of noise. Therefore, a key problem of spike cam-
era image reconstruction is how to better reconstruct under
different light intensities. As a well-known neuromorphic
camera, DVS make up for the shortage of spike camera.
DVS has the ability of motion sensitive and high dynamic
range sampling. Moreover, event cameras are less depen-
dent on the light intensity, which is exactly what spike cam-
era lacks. Meanwhile, the ability of full texture sampling of
spike camera also solves the problem that the event camera
is difficult to obtain texture.



Figure 3. The reconstruction results on the simulated data with different light intensities. We fix the motion speed scale S = 128 and
change the light intensity scales L from 1/32 to 1/2. The results show that the spike-based methods are sensitive to light intensity while
the event-based methods are more robust. However, the event-based methods are difficult to reconstruct the background texture. The result
of TFP is affected by noise when the light intensity is small. This is because it is difficult to collect enough spikes in the window for
reconstruction when the light intensity is weak. On the contrary, the noise is obvious in the results of TFI when the light intensity is high.
Our method uses both spike and event data to reconstruct high quality texture images.
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