A. Generated Images on CIFAR-100

We show the images generated by JEAT on CIFAR-100
in Fig 1. These images are rich in details and vivid.

Figure 1. Images generated by JEAT on CIFAR-100.

B. The Change of Energy
B.1. The Change of Energy Ey(x,y) in Training

We illustrate the change of energy Fy(z,y) in adver-
sarial training on CIFAR-100 in Fig. 2. Adversarial at-
tacks generate high-energy adversarial examples, and then
the energy of adversarial examples is decreased by updating
model parameters. As we show in our paper, adversarial
training flattens the energy region around real data in this
way.

B.2. The Change of Energy Fy(z) in Training

We illustrate the change of energy Fy(z) in adversarial
training on CIFAR-10 in Fig. 3, and CIFAR-100 in Fig. 4.
The value of AgEjp(z) fluctuates around zero, sometimes
positive and sometimes negative. Thus Ejy(z) has not been
well optimized in the classification task. Using Fy(z) in the
generation task by a robust classifier may be harmful to the
images’ quality.

B.3. The Change of Energy in Generation

Image generation by an original robust classifier is intro-
duced in the main paper, and the generating procedure of
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Figure 2. We illustrate the changes of energy in original adversarial
training [4] on CIFAR-100 in 50 epochs (model has converged).
The center points of the tags represent the mean value and the
lengths represent the variance. Adversarial examples increase the
energy Eg(x,y) as AgEg(z,y) > 0 during the training. The
energy Fg(x,y) of adversarial examples decrease after updating
parameters as A, Fg(z,y) < 0 during the training.
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Figure 3. We illustrate the changes of energy Fy(z) in original ad-
versarial training [4] on CIFAR-10 in 50 epochs (model has con-
verged). The center points of the tags represent the mean value
and the lengths represent the variance.
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F1gure 4. We 111ustrate the changes of energy Eg(x) in original
adversarial training [4] on CIFAR-100 in 50 epochs (model has
converged). The center points of the tags represent the mean value
and the lengths represent the variance.

images can be formulated as:

x/:x—Q~Vm(Eg(z7y)—E9(z))+\/ﬁe. 1)

As analyzed in Sec. 2.2, Ey(z,y) is the key term for
conditional generation by using robust classifier. We il-
lustrate V, Ey(x,y) and V, Eg(x) in generation process in
Fig. 5 (CIFAR-10) and Fig. 6 (CIFAR-100). In the be-
ginning, V, Ey(x,y) dominates for that the absolute value
of V,Eg(x) is less than that of V,Eg(x,y). As the num-



Table 1. Hyperparameters of different methods.

HYPERPARAMETER | LEARNING RATE | BATCH SIZE SGD SCHEDULER EPOCHS | WEIGHT DECAY MOMENTUM
JEAT(OURS) 1E-4 64 ADAM[160,180] 200 0 BETA=[0.9,0.999]
JEM 1E-4 64 ADAM[160,180] 200 0 BETA=[0.9,0.999]
FREE 0.1 128 MULTISTEP[100,150] 200 2E-4 0.9
FAST 0-0.2 128 CycCLIC 15 5E-4 0.9
TRADES 0.1 128 MULTISTEP[75,90,100] 120 2E-4 0.9

ber of iterations increases, the influence of V,FEy(x) and
VEg(z,y) gradually become much more closer. Thus,
Ey(x,y) plays a key role for conditional generation by us-
ing robust classifier.
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Figure 5. Ep(x,y) plays a major role when generating images
by the original robust classifier (CIFAR-10). We illustrate the
VazEg(x,y) and Vo Es(z) in the generation process of a robust
classifier (WRN-28-10) on CIFAR-10. The center points of the
tags represent the mean value and the lengths represent the vari-
ance. The horizontal axis represents the number of iterations.
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Figure 6. Eo(x,y) plays a major role when generating images
by the original robust classifier (CIFAR-100). We illustrate the
Va2Fg(x,y) and V;Fg(z) in the generation process of a robust
classifier (WRN-28-10) on CIFAR-100. The center points of the
tags represent the mean value and the lengths represent the vari-
ance. The horizontal axis represents the number of iterations.

C. The Gradient on 6 of log py(z)

pe(x) in JEAT algorithm can be expressed as:

exp(—Ep(z))

po(x) = Zo ; @

The gradient on 6 of log pg(z) is defined as

Vg log(pg(ac)) —VgEg(I) - fVQZg
~VoEo(x) — -V [, exp(—Ey(x))dx
—VoEy(z) + j Mv o Fy(z)dx
= —VQEQ(”L‘) + ]Epg(w)(VQEQ(.Z'))

3
We use Stochastic Gradient Langevin Dynamics (SGLD) to

approximate E,, ).

D. Proof for 7, = Ze

As defined in the main paper, the energy functions for
classifier are:

{ Eo(x,y)

= —log(exp(f(x;0)[y])),
oy “4)

—log(3"_; exp(f(x;0)[K])).
Also po(z,y) = eXp(*gee(%y))
constant which is defined as:

Zy = [, > exp(—Ep(x,y))dx
=/, %exp(,f(w; 0)[y])dz

R Z~9 is the normalizing

(&)

As py(z) = W’ Zy is the normalizing constant
which is defined as:

Zg = f exp( E(y( ))dl
= | exp(log( Zexp( (z;0)[y])))dz

=/, Zexp wﬁ)[y]))

By Eq. (5) and Eq. (6), it can be seen that Zy = Z@.

(©)

E. Algorithm for PreJEAT

In the main paper, we show the training algorithm
called Joint Energy Adversarial Training (JEAT),
which we replace cross-entropy loss —log pg(y|z) with

—logpg(z,y) = —log pe(y|x) — log pe(z) and use adver-
sarial examples found by

We also propose Preliminary Joint Energy Adversarial
Training (PreJEAT) which just trains model with adversar-
ial examples found by Eq. (7) and use cross-entropy loss.
We present the algorithm here in Algorithm 1.




Algorithm 1 Training and Generating of PreJEAT: Given
network f, E(z,y) = — log(exp(f(x)[y])) represent energy
of (z,y), E(z)=—log(>_, exp(f(z)[y])) represent energy
of x, ¢, adversarial perturbation radius ¢, SGLD step-size
a, SGLD steps K, epochs T, dataset of size M, learning
rate 7).

Training:
fori=1,2...,T do
for j =1,2...., M do
» Generating energy-based adversarial samples:
0 =U(—¢,€)
d=0+e- Sign(vm(EO(Iv y)))
0 = max(min(d,€), —e)
Tady = Tj +0
» Updating model parameters:
VoLy,(ylras)=Vo(Eo(Tadv,y) — Eo(Tadv))
0=0—1-VoLlpylraa,)
end for
end for

Generating:
2o ~ random sample
fort=0,1,2...., K — 1do
T4l = Tp — % . thEg(It,y) + \/a N(O,I)
end for
Output: x4, = v

F. Training Details

The hyper-parameters for our experiments are shown in
Tab. 1. We run JEM [2], Free adversarial training (Free
m=8) [5], Fast adversarial training (Fast) [6] and TRADES
(1/A=6)[7] with their open-source code. MultiStep sched-
uler decay by 10 every time.

G. Interesting Benefits of JEAT
G.1. Denoise

Due to the influence of factors such as the environment
and transmission channels, the image is inevitably contam-
inated by noise in the process of acquisition, compression
and transmission. In the presence of noise, subsequent im-
age processing tasks (such as video processing, image anal-
ysis, and tracking) may be negatively affected. Therefore,
image denoising plays an important role in modern image
processing systems. In this section, we found that the clas-
sifier trained by JEAT has the effect of denoising to some
extent.

We further show the energy contours of the normal clas-
sifier, robust classifier and JEAT classifier around a given
image from test dataset (CIFAR-10) in Fig. 7. The points

Original img ~ Generated img
(c) JEAT Classifier

Original img ~ Generated img
(a) Normal Classifier

Originalimg ~ Generated img
(b) Robust Classifier

Figure 7. We plot the energy contour around a given image of nor-
mal classifier (a), robust classifier (b), and JEAT classifier (c). The
center point represents the energy of the given image. Darker col-
ors in the diagram correspond to lower energy. Starting from the
original image, we generate images by different classifiers using
Langevin Dynamics.

(a) Noise picture

(b) Denoised picture(10steps)

(c) Denoised picture (50steps)
Figure 8. We show the change of energy contour in the process of
denoising. The initial noisy image has higher energy, and then the
denoised image is gradually obtained along the direction of energy
descent.

with the lowest energy of both the normal classifier and the
robust classifier deviate from the point where the real image
is located. The generation process will result in entering
the low energy positions along the direction of energy de-
scent from the real image. Therefore, even if it starts from
the real image, the image generated by the normal classi-
fier will be inferior. Because the low-energy region of the
original robust classifier deviates slightly from the real data,
the quality of generated images will be slightly better than
that of the normal classifier. Nevertheless, in the energy
of JEAT classifier, the real image has the minimum energy,
and the energy function is flat and smooth around the real
data. Starting from the real image, the image generated by
the JEAT classifier is almost identical to the real image.
This inspires us that if the energy of the noise image is
high, it is possible to generate an clean image along the
direction of energy descent, thereby denoising. We show
the different energy contours in the process of denoising by
JEAT classifier in Fig. 8. We get noisy images by injecting
Gaussian noise with a mean value of zero and a variance of
0.3 into the original image. Then we generate low-energy
images from these noisy images using Langevin Dynamics.
As shown in Fig. 9, JEAT classifier has good denoising



(e)
JEAT
Figure 9. We show that compared to the normal classifier and orig-
inal robust classifier, JEAT classifier can indeed achieve the effect
of denoising. (a) Original images. (b) Noise images obtained by
superimposing Gaussian noise with a mean value of 0 and a vari-
ance of 0.3 on the original image. (c) The image obtained after
denoising by the normal classifier. (d) The image obtained after
denoising by the robust classifier. (e) The image obtained after
denoising by the JEAT classifier.
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effect, while normal classifier and original robust classifier
have poor denoising effect.

G.2. Calibration

The outputs of a classifier are often interpreted as the
predictive confidence that this class was identified. How-
ever Guo et al. [3] claim that deep neural networks are often
not calibrated which means that the confidence always does
not align with misclassification rate. Expected Calibration
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Figure 10. We draw the reliability diagram of different classifiers
on original test data of CIFAR-10 and adversarial data. We use
FGSM attack (e = 8/255) [1] to get adversarial data. (a) The reli-
ability diagram of normal classifier on original clean data. (b) The
reliability diagram of normal classifier on adversarial data. (c) The
reliability diagram of robust classifier on original clean data. (d)
The reliability diagram of robust classifier on adversarial data. (e)
The reliability diagram of JEAT classifier on original clean data.
(f) The reliability diagram of JEAT classifier on adversarial data.

Error (ECE) is a metric to measure the calibration of a clas-
sifier. For a perfectly calibrated classifier, ECE value will
be zero.

We using the reliability diagram to find out how well the



classifier is calibrated in Fig. 10. The model’s predictions
are divided into bins based on the confidence value of the
target class, here, we choose 20 bins. The confidence his-
togram at the bottom shows how many test examples are in
each bin. Two vertical lines represent accuracy and aver-
age confidence, and the closer these two lines are, the better
the model calibration is. The reliability histogram at the top
shows the average confidence of each bar and the accuracy
of the examples in the bar. For each bin we plot the differ-
ence between the accuracy and the confidence using the red
bars in the diagram.

It can be clearly seen from the histogram that the con-
fidence of most predictions of these classifiers is greater
than 0.8. The normal classifier is always over-confidence
and gives more false positives. This phenomenon becomes
even worse when facing adversarial data and the ECE value
is 49.63%. Robust classifier will not give much over-
confident prediction when encountering adversarial pertur-
bation. However, when faced with clean data, the robust
classifier is under-confidence and gives more false nega-
tives. The good news is that the JEAT classifier has a good
calibration when classifying clean data or adversarial data.
When a model is deployed in a real-world scenarios, good
calibration is an important feature. And the confidence of a
model with good calibration can be used to judge whether to
output the result or recognize it again. The JEAT classifier
which is better calibrated than both normal classifier and
original robust classifier can be more useful in real-world
scenarios.
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