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Abstract Aggregate Update Accuracy (%)
Online Online 62.86
This supplementary material provides more implementa- Online Target 3.44
tion details and presents more experimental results, includ- Online Both 60.78
ing ablation studies on DAPU, batch size, and the number of Target Online 48.10
clients. We also present the convergence of FedU and more Target Target 10.27
t-SNE visualization of representations of different settings. Target Both 61.41

1. Implementation Details

In this section, we provide more implementation details
on image augmentations, semi-supervised evaluation, and
transfer learning evaluation.

Image Augmentations We adopt the image augmenta-
tions from BYOL [3] and SimCLR [1]. We select a ran-
dom patch of the image and resize it to 32x32 for CIFAR
datasets. After that, two transformations are applied to the
image: a random horizontal flip and a color distortion.

Semi-supervised Learning In semi-supervised evalua-
tion protocol, we train models with only unlabeled data —
excluding the 1% or 10% labeled data. These 1% and 10%
labeled data are only used in fine-tuning the trained models
with an additional classifier.

Transfer Learning In transfer learning evaluation pro-
tocol, we train models using Mini-ImageNet [5] dataset
and fine-tune on CIFAR [4] datasets. Images in Mini-
ImageNet have size 84x84, while images in CIFAR datasets
are 32x32. We scale image size of CIFAR datasets to be
84x84 in fine-tuning.

2. Experimental Results

Communication Protocol Table | shows that aggregat-
ing and uploading the online encoder achieves the best per-
formance. We run these experiments with ResNet-18 on
CIFAR-100 non-IID setting. It complements the results of
Table 4 in the main manuscript.

Divergence-aware Predictor Update Table 2 shows
that DAPU outperforms always updating the predictors of
clients using either the local or global predictor on both IID

Table 1. Top-1 accuracy comparison of using the online encoder
or target encoder for aggregation and update. Both means updat-
ing both encoders. Aggregating and updating the online encoder
achieves the best performance.

CIFAR-10 CIFAR-100
Update Method — A= Non-IID 1D
Local Pred. 8218 91.29 61.69 67.41
Global Pred. 84.07 91.41 6330  67.56
DAPU 87.14  93.13 68.02  67.66

Table 2. Top-1 accuracy comparison of DAPU and always updat-
ing with the local or global predictor. DAPU outperforms other
methods in all settings.

and non-IID settings. It complements the results of Fig-
ure 5(a) in the main manuscript, which only presents that
DAPU outperforms other methods on the non-IID setting.
Besides, Figure 2 presents the impact of threshold p on the
non-IID setting of the CIFAR-100 dataset, complementing
the results on the CIFAR-10 dataset in the main manuscript
(Figure 5(b)). It also indicates that ;x = 0.2 achieves the
best performance. We run these experiments with £/ = 1
and R = 800.

Impact of Batch Size We study the impact of batch size
in Table 3. Constant learning rate (LR) means that we use
the same learning rate = 0.032 for experiments of dif-
ferent batch sizes. As for adjusted LR, we use learning
rate n = %‘5932 for different batch sizes B. By ad-
justing the learning rate accordingly, the results are simi-
lar among batch sizes B = {32,64,128,256}. However,
when the learning rate is constant, a larger batch size leads
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Figure 1. T-SNE visualization of representations learned from different methods: (a) Aggregate the online encoder and update the target
encoder; (b) Aggregate the target encoder and update the online encoder; (c) Aggregate and update the online encoder; (d) Our proposed
FedU trained on non-IID CIFAR-10 data; (e) FedU trained on IID data; (f) Centralized unsupervised learning method (BYOL [3]). (a), (b),
and (c) always use the global predictor, while (d) uses DAPU to dynamically update the predictor. FedU with DAPU (d) presents better
clustering results than (a), (b), and (c). FedU’s representation learned from IID data (e) is also comparable with centralized training (f).
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Figure 2. Impact of threshold x on the non-IID setting of the
CIFAR-100 dataset. DAPU with p = 0.2 achieves the best perfor-
mance, complementing our results in the main manuscript.

Batch Size  Adjusted LR Constant LR
32 81.03 74.92
64 81.69 79.59
128 81.70 81.70
256 81.80 83.22

Table 3. Impact of batch size on performance. A larger batch size
leads to better performance when the learning rate is constant. The
performances of various batch sizes are similar when the learning
rate is adjusted accordingly.

to better performance. We use B = 128 in our main
manuscript. It indicates that the experimental results in the
main manuscript can be further improved with larger batch
size. We run these experiments with £ = 5 and R = 100
on non-1ID setting of CIFAR-10.

Convergence of FedU Figure 3 shows that FedU has
nice convergence property — the accuracy steadily im-
proves as training proceeds. We monitor the training
progress by performing classification using k-nearest neigh-
bors (kNN) [6, 2]. We set the number of neighbors to 200
and the temperature to 0.1. These experiments are run with
E =5and R = 100.

Scalability of FedU We compare the performance of dif-
ferent numbers of clients K in Figure 4. We use IID set-
ting to conduct the experiments to keep the same data dis-
tribution as we change K among {1,2,5,8,10}. We split
the CIFAR-10 dataset to K clients with equal data volume,
clients of larger K contain less data. Although the perfor-
mance decreases with the increase of K, it is still better
than single client training when K = 10. Besides, the per-
formance almost maintains from K = 5 to K = 10. We
run these experiments with £ = 5 and R = 100.

Representation Comparison We compare the t-SNE vi-
sualization of representations learned from different meth-
ods in Figure 1. Figure 1(a), 1(b), and 1(c) always uses the
global predictor to update clients’ predictors, complement-
ing the t-SNE visualizations on the main manuscript where
the local predictor are always used. FedU with DAPU 1(d)
has better clustering results than the first three, indicating
the effectiveness of DAPU. Besides, FedU’s representation
learned from IID data (Figure 1(e)) is also comparable with
centralized training (Figure 1(f)).
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Figure 3. The kNN testing accuracy improves as training contin-
ues, demonstrating the convergence of FedU.
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Figure 4. Impact of the number of clients on FedU. Although the
performance decreases as K increases, the performance of K =
10 is still better than single client training.
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