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We organize our supplementary material as follows.

• In Section 1, we introduce the details of the two additional losses, namely, multi-class focal loss and Lovász-softmax
loss, in the objective of Perception-aware Multi-sensor Fusion (PMF).

• In Section 2, we give more implementation details of PMF.

• In Section 3, we investigate the effect of the proposed residual-based fusion module.

• In Section 4, we study the effect of hyperparameters τ, γ, λ.

• In Section 5, we provide more visualization results of PMF on SemanticKITTI validation set.

• In Section 6, we show more visualization results of PMF on nuScenes validation set.

• In Section 7, we give more visualization results of PMF on the adversarial samples.

1. Details of the Loss Functions
For convenience, we show the architecture of PMF in Figure I. In Section 3.3 of the main paper, we have introduced the

objective of PMF. Specifically, we propose the perception-aware losses to measure the vast perceptual difference between the
data from RGB camera and LiDAR. Following [2, 6], we use the multi-class focal loss [4] to address the class imbalance issue
and Lovász-softmax loss [1] to measure the scale variance in semantic segmentation, respectively. Therefore, the objective
L̃ w.r.t. the LiDAR stream in two-stream network (TSNet) is defined as

L̃ = L̃foc + λL̃lov + γL̃per,

where L̃foc, L̃lov, L̃per indicate the multi-class focal loss, Lovász-softmax loss and perception-aware loss w.r.t. the LiDAR
stream, respectively. Here, γ and λ are hyper-parameters. The objective L w.r.t. the camera stream in TSNet is defined as

L = Lfoc + λLlov + γLper,

where Lfoc,Llov,Lper indicate the multi-class focal loss, Lovász-softmax loss and perception-aware loss w.r.t. the camera
stream, respectively.

In this section, we give the details of the multi-class focal loss [4] and Lovász-softmax loss [1] in the objective of PMF.
Let {P,X,y} be one of the training samples from a given data set, where P ∈ R4×N indicates a point cloud, N denotes the
number of points. Each point Pi = (x, y, z, r)⊤ consists of 3D coordinates (x, y, z) and an reflectance value (r). y ∈ RN

denotes the semantic labels for point cloud P. Let Y ∈ RH×W be the projected labels in the camera coordinates. H and W
indicate the height and width, respectively. For each point Pi, we project the 3D coordinates (x, y, z) to the pixel (h,w) in the
camera coordinate system by using perspective projection. Then, we initialize all pixels in Y by 0 and compute the projected
labels in Y by

Yh,w := yi.
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Figure I. Illustration of perception-aware multi-sensor fusion (PMF). PMF consists of three components: (1) perspective projection; (2)
a two-stream network (TSNet) with feature fusion modules; and (3) perception-aware losses Lper, L̃per w.r.t. the camera stream and the
LiDAR stream, respectively. We first project the point clouds to camera coordinate with perspective projection and learn the features from
both RGB images and point clouds using TSNet. Then, the image features are fused into the LiDAR stream network by fusion modules.
Last, we use perception-aware losses to measure the perceptual difference between the two modalities.

Multi-class focal loss. Let FL(p) = −(1 − p)2 log(p) be the focal-loss function. Õ ∈ RS×H×W indicates the output
probabilities of the LiDAR stream, where S denotes the number of classes. The multi-class focal loss w.r.t. the LiDAR stream
is defined as

L̃foc =
1

K

S∑
s=1

H∑
h=1

W∑
w=1

1{Yh,w = s}FL(Õs,h,w),

where K =
∑S

s=1

∑H
h=1

∑W
w=1 1{Yh,w = s} indicates the number of available labels. 1{·} indicates the indicator function.

Let O ∈ RS×H×W denotes the output probabilities of the camera stream. Then, the multi-class focal loss w.r.t. the camera
stream is

Lfoc =
1

K

S∑
s=1

H∑
h=1

W∑
w=1

1{Yh,w = s}FL(Os,h,w),

Lovász-softmax loss. The Lovász-softmax loss w.r.t. the LiDAR stream is defined as

L̃lov =
1

S

S∑
s=1

∆Js
(m̃(s)),

where

m̃i(s) =

{
1− Õs,h,w if s = Yh,w,

Õs,h,w otherwise.

∆Js
indicates the Lovász extension of the Jaccard index for class s. Here, (h,w) is obtained from the 3D coordinates (x, y, z)

of Pi by using perspective projection. m̃(s) ∈ [0, 1]N indicates the vector of errors. The Lovász-softmax loss w.r.t. the camera
stream is defined as

Llov =
1

S

S∑
s=1

∆Js
(m(s)),

where

mi(s) =

{
1−Os,h,w if s = Yh,w,
Os,h,w otherwise.
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2. More Implementation Details of PMF
In this section, we give more implementation details of PMF. We first discuss the number of fusion modules in the

two-stream network (See Figure I) and then introduce the method to obtain the sparse predictions from the dense ones.
Number of fusion modules. In Figure I, we insert L fusion modules into the LiDAR stream to fuse the features from the
camera. Note that one can add the fusion modules after each layer in the network. However, this can be computationally
expensive yet unnecessary. Inspired by [3, 5], we only insert four fusion modules into the LiDAR stream to fuse the multi-scale
features from the camera stream. Specifically, we fuse the camera features from the 7-th, 15-th, 27-th, 33-th convolutional
layers of ResNet-34 into the LiDAR features from the 14-th, 19-th, 24-th, 29-th convolutional layers of SalsaNext, respectively.
Method to obtain the sparse predictions. With the proposed perception-aware losses, PMF generates dense segmentation
results with information from RGB images and point clouds. We then obtain the sparse prediction from the dense results. Let
Õ ∈ RS×H×W be the output probabilities of the LiDAR stream. S indicates the number of classes. H and W indicate the
height and width of the predictions, respectively. Let Ŷ ∈ RH×W be the dense predictions from the LiDAR stream. Then, the
dense predictions is computed by

Ŷh,w = argmax
s

Õs,h,w.

Let ŷ ∈ RN be the sparse predictions of point cloud P. As shown in Figure II, for each point Pi, we first project the 3D
coordinates (x, y, z) to the camera coordinate system by using perspective projection and compute the corresponding pixel
(h,w) in the projected image. Then the semantic prediction ŷi w.r.t. the point Pi is computed by

ŷi := Ŷh,w.

Note that for the point cloud with multi-camera views, e.g., nuScenes, there are overlaps between different camera views.
To address this issue, we first run forward propagation for each camera view and merge the results by assigning the predictions
with the highest confidence scores to the points in the overlaps of different views.

𝐏𝐏𝑖𝑖 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑟𝑟 ⊤
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Figure II. Illustration of the pipeline to obtain the sparse segmentation from the dense prediction results. X̃ indicates the projected point
cloud. Ŷ and ŷ indicate the dense predictions and sparse predictions, respectively. For each point Pi, we first compute the corresponding
pixel (h,w) in the camera coordinate system by perspective projection. Second, we get the dense segmentation Ŷ from the prediction
results of PMF. Last, we obtain the corresponding sparse prediction ŷi w.r.t. the point Pi from the dense segmentation Ŷh,w.
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3. Effect of Residual-based Fusion Module
In Section 3.2 of the main paper, we have proposed the residual-based fusion (RF) modules to fuse the features from RGB

images into the LiDAR stream. To investigate the effect of components in RF modules, we replace the fusion modules in PMF
with two variants of RF modules (see Figure III) and evaluate the performance on SemanticKITTI. From Table A, the residual
connection improves the performance by 1.2% in mIoU. Besides, the attention module yields an improvement of 0.8% in
mIoU. These results demonstrate the effectiveness of each component in the proposed residual-based fusion module.

To further study the effect of the proposed residual-based fusion modules, we visualize the features of the first fusion
module in PMF. From Figure IV, features from RGB images provide more appearance information (e.g., texture) than those
from point clouds. With the proposed fusion module, PMF is able to fuse both information from RGB camera and LiDAR.
Besides, the noises from RGB images (e.g., the shadows of trees) are also reduced during feature fusion.

Table A. Comparisons of different fusion modules. The bold number indicates the best result.

Fusion Module Module A Module B Residual-based Fusion (Ours)
mIoU (%) 61.9 63.1 63.9
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Figure III. Illustration of different fusion modules. (a) indicates the naive concatenation fusion, (b) indicates the naive concatenation with
residual connection, (c) indicates our residual-based fusion module.

(a) LiDAR Features (b) Camera Features (c) Output Features

Figure IV. Visualization of features of the first residual-based fusion module in PMF. For clarity, we only visualize the first 16 feature maps
of the LiDAR features, camera features, and output features.
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4. Effect of hyperparameters τ, γ, λ
To investigate the effect of τ , we first set λ and γ to 1 and train PMF with τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} on SemanticKITTI.

From Table B, the model with τ = 0.7 achieves the best performance on the benchmark data set. We then set τ = 0.7 and
λ = 1 to train models with γ ∈ {0.0, 0.5, 1.0, 5.0, 10.0}. From Table C, PMF achieves the best performance with γ = 0.5.
Last, we set τ to 0.7 and γ to 0.5 to train models with λ ∈ {0.0, 0.5, 1.0, 1.5, 2.0}. From Table D, the model with λ = 1.0
achieves the best result on the data set. Therefore, in our experiments, we set τ, γ, λ to 0.7, 0.5, and 1.0.

Table B. Effect of τ . We highlight the best result in bold.

τ 0.1 0.3 0.5 0.7 0.9
mIoU (%) 63.2 63.2 63.2 63.6 63.5

Table C. Effect of γ. We highlight the best result in bold.

γ 0.0 0.5 1.0 5.0 10.0
mIoU (%) 61.7 63.9 63.6 63.7 63.6

Table D. Effect of λ. We highlight the best result in bold.

λ 0.0 0.5 1.0 1.5 2.0
mIoU (%) 61.6 63.0 63.9 62.6 62.6
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5. More Visualization Results on SemanticKITTI
In Section 4.4 of the main paper, we have provided the qualitative results on SemanticKITTI. In this section, we give more

visualization results on SemanticKITTI in Figure V. From the results, our PMF is robust to different lighting conditions in
RGB images, such as the shadows of trees and exposure on the surface of buildings.

(a) Input Images (c) PMF-dense (Ours)(b) Input Point Clouds (d) PMF (Ours) (e) Ground-truth

91
181
271
351
431
521
600
750

Figure V. More visualization results on SemanticKITTI. Better views by zoom in.

6



6. More Visualization Results on nuScenes
We provide more visualization results on nuScenes in Figure VI. From the results, our PMF shows its superiority on more

challenging scenes, i.e., night-time and sparse point clouds. For example, as shown in the 5-th to 8-th row in Figure VI, our
PMF still performs well when most of the information from RGB images is missing at night. These results suggest that our
method can address the segmentation with different lighting conditions.

(c) PMF-dense (Ours)(b) Input Point Clouds (d) PMF (Ours) (e) Ground-truth(a) Input Images 

Figure VI. More visualization results on nuScenes. Better views by zoom in.
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7. More Visualization Results on Adversarial Samples
We provide more results of PMF on adversarial samples in Figure VII. To obtain the adversarial samples, we insert extract

objects, i.e., car, traffic sign, bicyclist, into RGB images and keeping the point clouds no changed. From the results, our PMF
reduces most of the noises from the images and is more robust to the adversarial samples than the camera-based methods.

(b) Input Point Clouds (c)  FCN (Image-only) (d)  PMF (Ours) (e) Ground-truth(a) Input Images with Noise 

Figure VII. More visualization results of PMF on adversarial samples. FCN only uses RGB images as inputs, while PMF uses both RGB
images and point clouds as inputs. We highlight the position of the inserted objects by red boxes. Better views by zoom in.
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