
CrossCLR: Cross-modal Contrastive Learning For Multi-modal Video
Representations

- Supplementary Material-

Mohammadreza Zolfaghari1∗, Yi Zhu2, Peter Gehler2, Thomas Brox2

1University of Freiburg 2Amazon

..
.

..
.

G
lobal 

T
ransform

er

..
.

Intra-level Interactions

Inter-level Interactions

Global context

Clip or Sentence features

Frame or Word features

 Embedding

Segment 1

Segment k

Clip (or sentence)
 

Frame (or word) features

V
id

eo
/P

ar
a

gr
ap

h

Frame/word feature
 From segment i 

Clip (or sentence) features

..
.

video|paragraph features

Entire frame (or 
word) features

L
ocal T

rans form
er

Figure 1. Overview of architecture (best viewed in color). We use
the same architecture as COOT [1] which consist of two branches:
one for video input and one for text input. Since both streams have
same design, we here only show one branch. After encoding video
data and it’s corresponding text, we fed them to local transformer to
obtain clip/sentence level features. Then, global transformer aggre-
gates the clip/sentence level features and produces video/paragraph
features. The CrossCLR loss is applied to both local (clip/sentence)
and global (video/paragraph) features.

1. Architecture

A video vi is represented as a collection of consecutive
clips vi = [ci1, ci2, . . . , cil], and similarly we define para-
graph pi as a list of sentences pi = [si1, si2, . . . , sil]. Each
pair video vi and paragraph pi and also their clips (cij) and
sentences (sij) are considered temporally aligned.

We first apply pre-trained visual encoders (appearance,
object, etc) to extract per-frame features, where a clip cij
contains t frames. For the sentence sij with h words, we
utilize Bert-Based uncased model to extract features. As
explained in Section 4.3, for Youcook2 we use HowTo100m
pre-trained model [1] to encode video frames.

Note that our architecture is same as COOT. However, We
remove all losses used in COOT and only apply CrossCLR
in two points. In the architecture 1, we apply CrossCLR
in two locations: clip and sentence features obtained after
local transformer; video and paragraph features obtained
after global transformer. In all experiments, we train the
model with the following objective: Llocal+0.6Lglobal. For
Llocal we use CrossCLR with queue (hyper-parameters in
Table 1) and for Lglobal we use the CrossCLR without queue.
Pseudo-code of CrossCLR without queue in Algorithm 1 is
shown in PyTorch style.

2. Hyper-parameters
We list the hyper-parameters and ranges used during train-

ing. We largely follow prior work [1] for architecture hyper-
parameters and for the rest we tuned hyper-parameters based
on the performance on validation set. In general, we found
retrieval performance to increase with larger queue capac-
ity. In Table 1, we report the hyper-parameters used in the
experiments.

Table 1. Hyperparameters. This table shows the hyperparam-
eter ranges we considered and the final choices for LSMDC and
YouCook2 datasets. First block shows the hyperparameters for
optimizer, second block provides the architecture setting and last
block shows the hyperparameters for our CrossCLR loss. AF is our
Attention-aware Feature Aggregation module.

Hyperparameter Range LSMDC Youcook2
Optimizer RAdam RAdam RAdam
Learning rate 5e-5 - 1e-3 7e-4 7e-4
Weight Decay 0 0 0
Momentum 0.56 0.56 0.56
Warmup Epochs 4 4 4
Reduce on Plateau-Patience 6 6 6
Reduce on Plateau-Cooldown 4 4 4
Attention Layers 1 1 1
Attention Dimension [384, 768] 768 384
Attention Heads-Local [4, 8, 16] 16 8
Attention Heads-Global 1 - 8 8 8
AF Heads [4, 8] - 2
Pooler [Max, ATN] Max ATN
Dropout 1% - 10% 1% 5%
Temperature τ 0.03 0.03 0.03
Weight scale κ 1e-5 - 1 55e-4 35e-4
Intra-modality weight λ 0.1-1 65e-1 8e-1
Pruning threshold γ 0.1-1 0.9 0.9
Queue size 1,000-10,000 3,000 5,000

2.1. Effect of Pruning Threshold

Figure 4, presents a graph visualization of the Youcook2
dataset embeddings. As can be seen, some samples have
dense connections to other samples which means those sam-
ples are semantically similar to many samples. Therefore,
it’s critical to remove these highly similar samples from
the negative set to prevent semantic collision, as discussed



0.2 0.4 0.6 0.8 1.0
Pruning Threshold

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

M
ea

n 
R

@
1 

(T
ex

t-t
o-

V
id

eo
, V

id
eo

-to
-T

ex
t) 

\%

Figure 2. Impact of Pruning Threshold. We evaluate the effect
of pruning threshold on the retrieval performance for LSMDC
dataset using appearnce and action features.

in section 3.2 of paper. We change the pruning thresh-
old from 1e1 to 1 and show the results in Figure 2.1. To
prune samples from the negative set, we first divide all
scores in each set by the maximum score and then re-
move the samples which have score above the threshold.
Therefore, increasing threshold means removing samples
with higher similarity but keeping the other samples which
have scores less than threshold. We consider thresholds
γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and γ = 1
means no pruning. As shown in Figure 2.1, increasing the
threshold results in higher performance until γ = 0.9 and
after that again performance decreases. We found that for
both LSMDC and Youcook2 datasets γ = 0.9 is a reasonable
number.

2.2. Effect of Weight Scale

Figure 2.2, shows the retrieval performance with
different κ values. We train three models for each
κ ∈ {0.1, 0.01, 0.001, 0.003, 0.005, 0.007, 0.009}. When
weight scale is too high, CrossCLR does not converge very
well. But with numbers around 0.003-0.005 model performs
very well.

3. Experiments

3.1. Do multiple positives in CrossCLR help?

In this section, we empirically asses the effect of hav-
ing multiple positives in objective function. We define our
CrossCLR loss with multiple positive samples as following:

Lx = −Ei∈M

w(xi) log δ(xi,yi)+β
∑

yk∈Py

δ(xi,yk)

δ(xi,yi)+
∑

yk∈N̂E
x

δ(xi,yk)+λ
∑

xk∈N̂R
x

δ(xi,xk)

 (1)

10
3

10
2

10
1

Weight Scale  

2

4

6

8

10

12

M
ea

n 
R

@
1 

(T
ex

t-t
o-

V
id

eo
, V

id
eo

-to
-T

ex
t) 

\%

Figure 3. Impact of Weight Scale κ. CrossCLR is stable against
small changes in κ.

Figure 4. Graph representation of connections among samples in
Youcook2 dataset. Each sample is connected to another sample
if their feature similarity is above a certain threshold. Influential
samples are densely connected to other samples and therefore share
similar features with many other samples.

Ly = −Ei∈M

w(yi) log δ(yi,xi)+β
∑

xk∈Px

δ(yi,xk)

δ(yi,xi)+
∑

xk∈N̂E
y

δ(yi,xk)+λ
∑

yk∈N̂R
y

δ(yi,yk)

 (2)

Where β is a scaling factor for extra postive samples, Px
and Py are positive samples for Lx and Ly respectfully.
To construct the positive set, we select the top-K similar
samples to the pivot sample among the influential sam-
ples. To be precise, Px = {xk|k ∈ topK(Iy)} and
Py = {yk|k ∈ topK(Ix)}. The results are shown in Table 2.



In this experiment, for Youcook2 dataset we found that using
K = 2 and β = 0.15 works best. For LSMDC dataset, we
used K = 5 and β = 0.2. CrossCLR+MP on Youcook2
performs similar to the CrossCLR without multiple posi-
tives. However, on LSMDC we observe improvement when
multiple positives are used. LSMDC dataset is larger than
Youcook2 dataset and therefore it’s easier to find very close
positive samples to the original sample. Note that, removing
influential samples from the negative set reduces the effect
of pushing away samples with common semantics. But for
multiple positives case, optimization tries to align positive
samples and therefore it requires samples to be semantically
very close otherwise alignment is wrong.

3.2. Impact of different modality combinations:

We study the importance of different modality experts
and their combinations on representation learning in Table 3.
Using stronger features result in higher performance. The
object expert modality gives the lowest performance and
action modality produces the best performance in single
modality setting. Additionally, we compare the retrieval
performance with different combinations of modalities.
To combine several modalities, we simply concatenate
the features. In addtion, we also trained the network with
combining two modalities and inputing them to network
(Table 3 second block from top shown with +). In this
paper, we don’t study the architecture design for combining
multiple modalities and therefore leave this question for
future studies.

Challenges with Object Features: In Table 3, the object
features provide lower performance in comparison to scene
or action experts. The reason is that current object detection
models are not trained on real-world or large scale movie
datasets. Therefore these models cannot detect objects very
well due to domain shift or high variations in visual features
and high number of objects. In our experiments, we used
a Faster RCNN [2] model and used all objects detected
with score above 0.7. In Figure 5, we visualized some of
challenging cases in object detection.

4. Qualitative Results
Figure 6, shows two qualitative examples for video cap-

tioning on Youcook2 dataset (samples are selected randomly
for a fair comparison with COOT and MART). In Figure 7,
we visualize the video frames in the embedding space based
on distances between text embeddings for Youcook2 dataset.
Two videos are close to each other if their text features are
similar to each other. We use t-SNE and project the text
embeddings to 2D space and then visualize each point with
it’s corresponding video frame. As can be seen, the text em-
beddings are clustered semantically and aligned with visual
semantics.

Figure 5. Challenges in Object Detection for Movie Videos.
We show several qualitative examples of failure in object detection.
No labeling: model cannot detect any object in the frame while
there is an object, Over labeling: Labeling same object several
times, Wrong labeling: Wrong category for the detected object, and
Unknown objects: Since some objects are not labeled (or doesn’t
exist) in the training set of object detection model, these objects
that cannot be recognized by the model.

Algorithm 1 Pseudocode of CrossCLR (no queue version)
in a PyTorch style.
bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

# enc_v, enc_t: encoder networks for video and text
# in_v, in_t: input video and text embeddings (BxD)
# B: batch size
# t: temperature, n_keep: 1-(pruning_percentage)
# t_w: loss weightening temperature
# mask = 1-np.eye(B)
# def norm_w(x): return x/sum(x)
# def mean_w(x,w,t): return sum(x)/(sum(exp(w/t)))

# Encode input video and text embeddings
emb_v, emb_t = enc_v(in_v), enc_t(in_t)

# Compute positive and negative logits
l_vt = mm(emb_v,emb_t.t())/t #video to text
l_tv = mm(emb_t,emb_v.t())/t #text to video
l_vv = (mm(emb_v,emb_v.t())/t)*mask #video to video
l_tt = (mm(emb_t,emb_t.t()/t)*mask #text to text

# Compute proximity of semantics
prox_vid = mean(mm(in_v, in_v.t()) * mask)
prox_txt = mean(mm(in_t, in_t.t()) * mask)
scores_v = prox_vid / max(prox_vid)
scores_t = prox_txt / max(prox_txt)

# Prune samples from intra-modality negative set
l_vv_p = l_vv[:, scores_v<threshold]
l_tt_p = l_tt[:, scores_t<threshold]

# Prune samples from inter-modality negative set
l_vt_p = l_vt[:, scores_v<threshold]
l_tv_p = l_tv[:, scores_t<threshold]

# Concatenate positive and negative logits
l_vtv = cat([l_vt_p, t_w * l_vv_p], dim=1)
l_tvt = cat([l_tv_p, t_w * l_tt_p], dim=1)

# compute the loss. Crossentropy without reduction
labels = arange(l_vt.shape[0])
loss_vtv = cross_entropy_loss(l_vtv, labels)
loss_tvt = cross_entropy_loss(l_tvt, labels)

# Weight losses based on semantic proximity
w_vtv = norm_w(prox_vid)
w_tvt = norm_w(prox_vid)
loss_vtv = loss_vtv * exp(w_vtv / t_w)
loss_tvt = loss_tvt * exp(w_tvt / t_w)

loss = (mean_w(loss_vtv, w_vtv, t_w) +
mean_w(loss_tvt, w_tvt, t_w) ) /2

References
[1] Simon Ging, Mohammadreza Zolfaghari, Hamed Pirsiavash,

and Thomas Brox. Coot: Cooperative hierarchical transformer
for video-text representation learning. In Advances on Neural
Information Processing Systems (NeurIPS), 2020. 1



Table 2. Effect of Multiple Positives in CrossCLR Loss. Comparison between our CrossCLR with multiple positives (MP) and standard
CrossCLR which does not have multiple positives. For LSMDC experiment, we use appearance and action features together.

Youcook2 LSMDC

Text =⇒ Video Video =⇒ Text Text =⇒ Video Video =⇒ Text

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
CrossCLR 19.5±0.49 45.9±0.55 58.3±0.76 18.5±0.32 44.8±0.82 57.9±0.77 10.9 26.2 34.7 12.0 26.1 35.3
CrossCLR+MP 19.3±0.51 45.3±0.85 58.2±0.77 18.4±0.45 44.4±0.61 57.6±0.81 11.2 26.6 35.8 12.9 27.4 36.4

Table 3. Performance of different modality combinations. + We
feed both modalities to network. ⊕ we train the network on each
modality separately and then output embeddings are concatenated.

Text =⇒ Video

R@1 R@5 R@10 MdR↓ MnR↓
Random 0.1 0.5 1.0 500.0 500.0
Object 2.1 7.7 14.3 108.0 187.3
Scene 5.9 18.2 24.9 57.0 132.4
HowTo100M 6.4 18.9 26.4 44.0 115.0
Appearance 9.1 22.8 32.0 41.0 120.4
Action 9.3 22.3 30.7 36.0 112.3
Action+Scene 8.8 25.9 34.3 25.0 88.8
Action+HowTo100M 9.6 24.1 35.1 26.0 86.7
Action+Object 9.7 23.9 31.7 31.0 102.8
Action+Appearance 10.9 26.2 34.7 27.0 91.0
Scene ⊕ Object 6.0 17.8 24.8 55.0 130.6
HowTo100M ⊕ Object 6.4 19.4 27.3 44.0 114.8
Appearance ⊕ Object 8.2 22.7 29.4 44.0 121.1
Scene ⊕ HowTo100M 8.7 23.6 30.1 37.0 102.7
Action ⊕ Object 9.0 23.1 31.4 35.0 109.3
Action ⊕ HowTo100M 10.1 26.3 36.0 24.0 90.4
Scene ⊕ Appearance 10.2 24.2 32.0 39.0 111.0
HowTo100M ⊕ Appearance 10.5 25.5 34.4 31.0 97.3
Action ⊕ Scene 11.0 24.9 34.3 30.0 96.9
Action ⊕ Appearance 12.0 27.7 36.2 24.0 92.4
Scene ⊕ Object ⊕ HowTo100M 8.0 22.4 30.8 37.0 106.0
Object ⊕ Appearance ⊕ HowTo100M 9.4 26.5 34.1 34.0 101.1
Scene ⊕ Appearance ⊕ Object 9.2 23.3 31.9 38.0 112.4
Action ⊕ Scene ⊕ Object 10.0 25.2 33.6 32.0 100.1
Scene ⊕ Appearance ⊕ HowTo100M 10.8 26.8 34.4 32.0 97.3
Action ⊕ HowTo100M ⊕ Object 11.3 26.4 34.2 27.0 93.1
Action ⊕ Scene ⊕ HowTo100M 11.8 27.2 36.5 23.0 88.2
Action ⊕ Appearance ⊕ Object 12.4 27.5 35.7 28.0 95.7
Action ⊕ Appearance ⊕ Scene 12.6 27.2 36.7 24.0 91.5
Action ⊕ Appearance ⊕ HowTo100M 13.4 28.4 37.8 22.0 84.9

[2] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks, 2016. 3

MART: Add tomatoes and beef to a pot. Add water to the pan. Add tomato puree and salt. Add 
the beef and parsley to the soup. Add the beef to the pot. Add water to the soup and let it 
simmer. Add the soup to the soup. 

COOT: Add the tomatoes and onions to a food processor and blend them. Add the tomatoes 
and a bay leaf to the pot. Add the tomatoes and simmer. Remove the tomatoes from the pot 
and let it cook. Remove the tomatoes from the pot and let it cook. Strain the soup to a boil and 
let it boil. Turn on the heat and heat to a boil. 

CrossCLR: Add chopped tomatoes and onions to a pot. Add water to the pan. Add the 
tomatoes and cover to cook for 5 minutes. Drain the tomatoes and let the liquid cool. Add 
chopped tomatoes to the pot and simmer. Strain the tomato mixture to a blender and blend the 
soup. Heat the pot on a stove and let it boil.

GT: Add tomato onion green chili and rice to a pan. Add water to the pan. Boil the ingredients 
and then turn down the heat. Strain the ingredients. Blend the ingredients. Add the water to the 
mixture and strain. Boil the soup.

MART: Add flour to a bowl and whisk. Cut the chicken into pieces. Coat the chicken in flour. 
Coat the chicken in flour egg and breadcrumbs. Fry the chicken in a pan. Drizzle the sauce 
on top of the bread. Add sauce to the pizza. Bake the dish in the oven. 

COOT: Mix parmesan cheese black pepper and garlic powder. Cover the chicken in the bag. 
Coat the chicken in the flour. Coat the chicken in the egg and coat with flour. Place the 
chicken in a pan and fry it on a pan. Pour sauce on top of the chicken and top with mozzarella 
cheese. Sprinkle parmesan cheese on top. Bake the chicken in the oven. 

CrossCLR: Mix flour salt pepper and cayenne pepper. Pound the chicken. Coat the chicken 
in the egg. Coat the chicken in the egg and bread crumbs.  Fry the chicken in a pan. Spread 
tomato sauce and mozzarella cheese on the chicken. Sprinkle cheese on top. Bake the dish 
in the oven.

GT: Mix bread crumbs and parmesan cheese. Pound the chicken. Rub salt and pepper onto 
the chicken. Rub flour onto the chicken dip it in egg and coat with breadcrumbs. Fry the 
chicken in a pan. Spread sauce over the chicken. Top the chicken with mozzarella cheese. 
Bake the chicken in the oven.

Figure 6. Captioning samples for Youcook2 dataset. We ran-
domly selected two samples for video captioning to have a fair
comparison with COOT and MART methods. Green: correct cap-
tioning, Yellow: Ok but not accurate, and Red: wrong captioning.



Figure 7. Visualization of the video frames based on their text
embeddings. We use t-SNE to project text embeddings to 2D space
and then present each point with it’s corresponding video frame.


