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A. Illustration of Our Self-Paced Learning
In Fig. A, we give an illustration for the proposed self-

paced self-training (SPST) in an easy-to-hard learning man-
ner, which selects target samples with pseudo labels from
the most confident category predictions (cf. Sec. 3.1 in the
main text).

B. More Experiment Results
B.1. More Results of Class-Wise Accuracy

In Table A, we report the class-wise classification accu-
racy on the task S→M, which shares the same settings as
the synthetic-to-real task M→S* (see Table 2 in the main
text). In general, we have similar observations: (1) our pro-
posed GAST achieves a remarkable performance gain over
all compared methods including the state-of-the-art DefRec
+ PCM, in terms of the average accuracy; (2) in almost all
classes, our GAST performs better than or is comparable
to DefRec + PCM; (3) all GAST variants except for the
second one (i.e. RotCls only) outperform the very baseline
w/o Adapt, but RotCls can bring benefits complementary
to LocCls, i.e. LocCls+RotCls improves over LocCls; (4)
combining all components (indicated by GAST) further en-
hances the performance. All these observations confirm the
complementarity of the proposed three components and the
superiority of our GAST.

B.2. Effect of Source Geometries

We examine the effect of geometric information from the
source domain on classifying target instances. In Table B,
we compare the results of GAST and GAST w/o Source Ge-
ometry Encoding (SGE) that removes both self-supervision
of rotation and location on source data, on all adaptation
tasks. It is observed that the performance on each task
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degrades significantly when GAST loses the awareness of
source geometries during network training. This verifies
the effectiveness of capturing domain-invariant geometric
patterns.

B.3. Study of Rotation Invariance

We study an alternative strategy to capture domain-
invariant geometric patterns, i.e. GAST w. Rotation Invari-
ance Encoding (RIE) that categorizes an object point cloud
with any rotation angle into one self-supervised class to
achieve rotation invariance. Comparisons between GAST
and GAST w. RIE are shown in Table A. We highlight the
main observations below. (1) On average, GAST with ro-
tation angle prediction outperforms GAST w. RIE with ro-
tation angle confusion by a large margin. This verifies the
significant effect and rationality of our used strategy. (2)
On some classes like Bed and Bookshelf, GAST achieves
a better performance than GAST w. RIE; on other classes
like Cabinet, Lamp, and Monitor, GAST w. RIE surpasses
GAST. This suggests that the two strategies can be comple-
mentary. Intuitively, GAST conducts a group-wise align-
ment and GAST w. RIE does a domain-wise one. In future,
we will attempt to combine the two strategies.

B.4. Convergence and Generalization Analysis

We analyze convergence performance and generalization
ability of our GAST by comparing it with the very base-
line w/o Adapt in Fig. B, where we show the accuracy/loss
curves over training epochs on held-out test sets of the target
and source domains. Note that we empirically activate our
proposed SPST component during the last 20 epochs, since
SPST would introduce noises at the early stages of network
training when the generated pseudo labels are extremely un-
reliable. We can observe that GAST after SPST works has a
significant improvement in the test accuracy/loss on the tar-
get domain, converges more stably, and exceeds w/o Adapt.
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Fig. A. Illustration of our self-paced self-training (SPST), which selects target samples with pseudo labels at the higher levels
of confidence.

LocCls RotCls SPST Bathtub Bed Bookshelf Cabinet Chair Lamp Monitor Plant Sofa Table Avg.
Supervised 96.0 95.0 97.0 91.9 100.0 100.0 100.0 93.0 98.0 100.0 97.1
w/o Adapt 96.0 34.0 49.0 22.1 99.0 95.0 100.0 67.0 98.0 100.0 76.0
DANN [2] 84.0 2.0 1.0 57.0 97.0 95.0 90.0 8.0 96.0 100.0 63.0
PointDAN [3] 92.0 33.0 5.0 22.1 96.0 85.0 88.0 42.0 96.0 96.0 65.5
DefRec + PCM [1] 100.0 62.0 41.0 36.0 100.0 90.0 98.0 71.0 98.0 100.0 79.6

GAST

X 100.0 25.0 41.0 51.2 100.0 95.0 96.0 65.0 97.0 100.0 77.0
X 94.0 22.0 33.0 53.5 100.0 85.0 95.0 44.0 98.0 100.0 72.4

X 96.0 41.0 62.0 52.3 100.0 95.0 99.0 76.0 98.0 100.0 81.9
X X 98.0 25.0 66.0 40.7 100.0 85.0 96.0 65.0 98.0 100.0 77.4
X X X 98.0 62.0 67.0 44.2 100.0 90.0 92.0 78.0 98.0 100.0 82.9

GAST w. RIE X X X 100.0 2.0 48.0 59.3 100.0 95.0 98.0 78.0 98.0 100.0 77.8
GAST w. PCM X X X 98.0 41.0 77.0 46.5 100.0 95.0 94.0 77.0 98.0 100.0 82.7

Table A: Evaluation of class-wise classification accuracy (%) on the ShapeNet-10 to the ModelNet-10 (S→M). LocCls:
distortion location prediction; RotCls: rotation angle prediction; SPST: self-paced self-training.

M→S M→S* S→M S→S* S*→M S*→S Avg.
Supervised 93.9 ± 0.2 78.4 ± 0.6 96.2 ± 0.1 78.4 ± 0.6 96.2 ± 0.1 93.9 ± 0.2 89.5 ± 0.3
w/o Adapt 83.3 ± 0.7 43.8 ± 2.3 75.5 ± 1.8 42.5 ± 1.4 63.8 ± 3.9 64.2 ± 0.8 62.2 ± 1.8
DANN [2] 74.8 ± 2.8 42.1 ± 0.6 57.5 ± 0.4 50.9 ± 1.0 43.7 ± 2.9 71.6 ± 1.0 56.8 ± 1.5
PointDAN [3] 83.9 ± 0.3 44.8 ± 1.4 63.3 ± 1.1 45.7 ± 0.7 43.6 ± 2.0 56.4 ± 1.5 56.3 ± 1.2
RS [4] 79.9 ± 0.8 46.7 ± 4.8 75.2 ± 2.0 51.4 ± 3.9 71.8 ± 2.3 71.2 ± 2.8 66.0 ± 1.6
DefRec + PCM [1] 81.7 ± 0.6 51.8 ± 0.3 78.6 ± 0.7 54.5 ± 0.3 73.7 ± 1.6 71.1 ± 1.4 68.6 ± 0.8
GAST(R = 6,L = 8) 85.0 ± 0.2 54.7 ± 0.3 69.2 ± 0.4 45.7 ± 0.2 69.7 ± 0.8 70.7 ± 0.1 65.8 ± 0.3
GAST w/o SGE 80.6 ± 0.2 53.9 ± 0.2 75.6 ± 0.4 47.6 ± 0.1 68.6 ± 0.3 71.0 ± 0.1 66.2 ± 0.2
GAST w. PCM 85.1 ± 0.2 55.5 ± 0.3 79.6 ± 0.7 54.6 ± 0.2 78.0 ± 0.4 75.4 ± 0.4 71.4 ± 0.4
GAST 84.8 ± 0.1 59.8 ± 0.2 80.8 ± 0.6 56.7 ± 0.2 81.1 ± 0.8 74.9 ± 0.5 73.0 ± 0.4

Table B: Comparative evaluation in classification accuracy (%) averaged over 3 seeds (± SEM) on the PointDA-10 dataset.

This verifies the effectiveness of our proposed SPST. It is
worth noting that in the realistically significant synthetic-to-
real task M→S*, GAST is always superior over w/o Adapt,
demonstrating the usefulness and good generalization abil-
ity of our proposed self-supervised geometric information
encoding.

B.5. Parameter Sensitivity

We examine the sensitivity of our proposed GAST to its
hyper-parameters R (i.e. the number of rotation angles) and
L (i.e. the number of split locations) by doing GAST ex-
periments in another setting of R = 6 and L = 23 = 8
on all adaptation tasks. The results are reported in Table B.



(a) S→M

(b) M→S*

Fig. B. Convergence performance of GAST and w/o Adapt. Note that “Trgt_Acc"/“Trgt_loss" and “Src_Acc" / “Src_loss"
indicate the accuracy/loss curves on held-out test sets of the target and source domains, respectively.

We can see that on almost all tasks, GAST (R = 6,L = 8)
encounters a significant performance degradation, demon-
strating the reasonability of the hyper-parameter setting (i.e.
R = 8 and L = 33 = 27) adopted in the main text, al-
though more various settings are certainly necessary to be
examined.

B.6. Exploration of Point Cloud Mixup

We explore in our algorithmic framework the Point
Cloud Mixup (PCM), a data augmentation technique
adopted in [1], which may alleviate the long-tailed prob-
lem (i.e. class imbalance). In Table A, we also report the
class-wise classification accuracy of GAST w. PCM that



replaces our original loss with the mixup one on the labeled
source data, on the task S→M. As we can see, PCM indeed
improves the results on long-tailed classes, e.g. Cabinet and
Lamp, but degrades those on major classes, e.g. Bed and
Plant. This yields a slightly worse average result than our
proposed GAST does. Such an observation is reflected in
Table B as well, by comparing the results of GAST and
GAST w. PCM on all adaptation tasks. Besides a slight
improvement on M→S and S*→S, adding PCM to GAST
results in degraded performance on other tasks. This en-
courages us to explore other techniques specific to the long-
tailed problem, which can not only perform well on long-
tailed classes but also remain superior on major ones.
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