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A1. Decouple Self-connections
Previous works [7, 8, 3] found that decoupling the trans-

formations of self-connections and other edges can improve
the 3D HPE performance, which we have also observed.
Following Liu et al. [3], Eq. (2) and Eq. (3) are rewritten
as:

h′
i = σ(Whiãii +

∑
j∈Ni

Vhj ãij) (10)

h′
i = σ(Wihiãii +

∑
j∈Ni

Vjhj ãij) (11)

where Ni is the set of neighboring nodes of node i exclud-
ing itself, W ∈ RD′×D and Wi ∈ RD′×D (i = 1, · · · , N )
are weight matrices for self-connections, and V ∈ RD′×D

and Vj ∈ RD′×D (j = 1, · · · , N ) are weight matrices for
edges between different nodes. Eq. (10) and Eq. (11) are
the decoupling versions of the vanilla graph convolution and
weight unsharing [3], respectively.

The decoupling version of our weight modulation, i.e.,
Eq. (4), can be formulated as below:

h′
i = σ((mi ⊙W)hiãii +

∑
j∈Ni

(mj ⊙V)hj ãij) (12)

Note we have reused the symbols defined in the paper.
Putting together updated features of all nodes, Eq. (10)

and Eq. (12) can be equivalently rewritten as compact
forms:

H′ = σ(WHÃself +VHÃother) (13)

H′ = σ((M⊙ (WH))Ãself + (M⊙ (VH))Ãother)
(14)

where Ãself and Ãother are respectively affinity matrices
of self-connections and other edges, and they are normal-
ized [2] separately. We have tried to use two different
weight modulation matrices for the self and other connec-
tions but do not observe improvement.
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Method Channels Params MPJPE P-MPJPE

w/o weight modu. + w/o affinity modu. 128 0.27M 49.73 39.92
w/ weight modu. + w/o affinity modu. 124 0.27M 42.04 33.25
w/o weight modu. + w/ affinity modu. 128 0.27M 40.53 31.39
w/ weight modu. + w/ affinity modu. 124 0.27M 38.83 30.35

w/o weight modu. + [8] 128 0.27M 43.05 33.43
w/ weight modu. + [8] 124 0.27M 40.98 32.82

Table 1. Ablation study on affinity modulation and weight modu-
lation. The units of MPJPE and P-MPJPE are millimeters (mm).
‘w/o affinity modu.’ means using a predefined skeleton graph.

A2. Visualization of Affinity Modulation

We visualize affinity matrices learned by different affin-
ity modulation methods in Fig. 1. They are extracted from
the first graph convolution layer. We can see that learning a
modulation matrix added to the human skeleton graph can
include some meaningful relations beyond the natural con-
nections of body joints, e.g., left/right hip and left/right an-
kle in Fig. 1 (f). We visualize different modulation matrices
in skeleton graph in Fig. 2. Note that we draw the undi-
rected graph of all the modulation matrices for simplicity.

A3. More Ablation Study

We provide extra ablation study to illustrate the effective-
ness of affinity modulation and weight modulation in Tab.
1. We also include results obtained by replacing our affinity
modulation with the learnable graph in [8].

A4. More Comparison with State of the Art

In Tab. 2, we compare our Modulated GCN with [6].
Our method has comparable performance with their single-
frame model. We would like to point out that the 2D pose
correction strategy proposed in [6] is complementary to our
method and can also be used to improve the performance of
Modulated GCN.

As mentioned in the paper, we set the channels to 384
to handle the detection errors for 2D pose detections. The
model size is 2.87M. By comparison, the model sizes of



Figure 1. Visualization of affinity modulation: (a) Askeleton, (b) Ano−skeleton, (c) Amul, (d) Amix, (e) Aadd, and (f) Aadd with
symmetry regularization.

[1], [5] (single-frame), [4] are respectively 2.92M, 4.29M
and 4.29M.

A5. More Qualitative Results

Fig. 3 shows some extra visualization results obtained
by our Modulated GCN on Human3.6M. We find that most
of the failure cases occur when the 2D detector fails to pre-
dict accurate 2D human poses due to severe self-occlusion.
However, our Modulated GCN can still generate plausible
3D poses with respect to the estimated 2D poses. Fig. 4 pro-
vides some qualitative results obtained by our Modulated
GCN on the wild images. These image frames are extracted
from different YouTube videos. Our model achieves satis-
factory results on the unseen scenes. This indicates that our
model generalizes well to unseen actions and datasets.
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Figure 2. Visualization of affinity modulation in skeleton graph: (a) Askeleton, (b) Ano−skeleton, (c) Amul, (d) Amix, (e) Aadd, and (f)
Aadd with symmetry regularization. The threshold is set as 0.5.

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Xu et al. [6] (single-frame) 40.6 47.1 45.7 46.6 50.7 63.1 45.0 47.7 56.3 63.9 49.4 46.5 51.9 38.1 42.3 49.2

Ours 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4

Table 2. Quantitative comparisons on Human3.6M under Protocol #1. Errors are in millimeters.



Figure 3. Qualitative results obtained by our Modulated GCN on the Human3.6M dataset. The last two rows are failure cases.

Figure 4. Qualitative results obtained by our Modulated GCN on the wild images


