
Bridging the Reality Gap for Pose Estimation Networks using Sensor-Based
Domain Randomization

Frederik Hagelskjær
SDU Robotics

University of Southern Denmark
Odense, Denmark
frhag@mmmi.sdu.dk

Anders Glent Buch
SDU Robotics

University of Southern Denmark
Odense, Denmark
anbu@mmmi.sdu.dk

Abstract

Since the introduction of modern deep learning meth-
ods for object pose estimation, test accuracy and efficiency
has increased significantly. For training, however, large
amounts of annotated training data are required for good
performance. While the use of synthetic training data pre-
vents the need for manual annotation, there is currently a
large performance gap between methods trained on real
and synthetic data. This paper introduces a new method,
which bridges this gap.

Most methods trained on synthetic data use 2D images,
as domain randomization in 2D is more developed. To ob-
tain precise poses, many of these methods perform a final
refinement using 3D data. Our method integrates the 3D
data into the network to increase the accuracy of the pose
estimation. To allow for domain randomization in 3D, a
sensor-based data augmentation has been developed. Addi-
tionally, we introduce the SparseEdge feature, which uses a
wider search space during point cloud propagation to avoid
relying on specific features without increasing run-time.

Experiments on three large pose estimation benchmarks
show that the presented method outperforms previous meth-
ods trained on synthetic data and achieves comparable re-
sults to existing methods trained on real data.

1. Introduction
In this paper, we present a pose estimation method

trained entirely on synthetic data. By utilizing 3D data
and sensor-based domain randomization, the trained net-
work generalizes well to real test data. The method is tested
on several datasets and attains state-of-the-art performance.

Pose estimation is generally a difficult challenge, and
the set-up of new pose estimation systems is often time-
consuming. A great deal of work is usually required to ob-
tain satisfactory performance [8]. The introduction of deep

learning has allowed pose estimation to obtain much better
performance compared with classic methods [15]. How-
ever, the training of deep learning methods requires large
amounts of data. For new use cases, this data needs to
be collected and then manually labeled. This is an exten-
sive task and limits the usability of deep learning meth-
ods for pose estimation. The amount of manual work can
be drastically reduced by generating the data synthetically.
However, getting good performance on real data with meth-
ods trained on synthetic data is a difficult task. Classi-
cal methods generally outperform deep learning methods
when using synthetic training data. An example of this is
DPOD [35], where accuracy on the LM dataset [12] falls
from 95.2% to 66.4% when switching from real to syn-
thetic training data. Another example is the method [30]
which is trained on synthetic depth data. This method only
achieves a score of 46.8%, and is outperformed by the origi-
nal Linemod [12] method at 63.0%. As a result, most meth-
ods rely on real training data [32, 6, 16].

In this paper, we present a novel method for pose estima-
tion trained entirely on synthetic data. As opposed to other
deep learning methods, the pose estimation is performed in
point clouds. This allows for the use of our sensor-based
domain randomization, which generalizes to real data. To
further increase the generalization, a modified edge feature
compared to DGCNN [33] is also presented. This edge fea-
ture allows for sparser and broader neighborhood searches,
increasing the generalization while retaining speed.

The trained network performs both background segmen-
tation and keypoint voting on the point cloud. This allows
the network to learn the correct object segmentation when
the correct keypoint is difficult to resolve. For example,
determining the correct keypoint votes for a sphere is an
impossible task, while learning the segmentation is much
more simple. To handle symmetry, the method allows for
multiple keypoint votes at a single point. This framework
allows us to test the method on three different benchmark-

935



ing datasets with 55 different objects without changing any
settings. Additionally, the method is able to predict whether
the object is present inside the point cloud. This makes the
method able to work with or without a candidate detector
method. In this article, Mask R-CNN [9] is used to propose
candidates, to speed up computation.

Our method achieves state-of-the-art performance on the
Linemod (LM) [12] dataset for methods trained with syn-
thetic data, and outperforms most methods trained on real
data. On the Occlusion (LMO) dataset [2] the method
shows performance comparable with methods trained on
real data. Additionally, on the four single instance datasets
of the BOP dataset [15], our method outperforms all other
methods trained on the same synthetic data.

The paper is structured as follows: We first review re-
lated papers in Sec. 2. In Sec. 3, our developed method
is explained. In Sec. 4, experiments to verify the method,
and results are presented. Finally, in Sec. 5, a conclusion is
given to this paper, and further work is discussed.

2. Related Work
Deep learning based methods have heavily dominated

the performance in pose estimation for the last five years.
Especially CNN-based models have shown very good per-
formance. Several different approaches have been made to
utilize CNN models for pose estimation.
2D methods: In SSD-6D [19], a network is trained to clas-
sify the appearance of an object in an image patch. By
searching through the image at different scales and loca-
tions, the object can then be detected. A different approach
is used in both BB-8 [26] and another method [29] where a
YOLO-like [27] network is used to predict a set of sparse
keypoints. In PVNet [24], the network instead locates key-
points by first segmenting the object and then letting all re-
maining pixels vote for keypoint locations. In PoseCNN
[34], the prediction is first made for the object center, af-
ter which a regression network determines the rotation. In
CDPN [21], the rotation and translation are also handled
independently, where the translation is found by regres-
sion, and the rotation is found by determining keypoints
and then applying PnP. Similar to our method, the EPOS
[13] method uses an encoder-decoder network to predict
both object segmentation and dense keypoint predictions.
However, unlike our method, the network only runs in 2D
images. The DPOD [35] method also computes dense key-
point predictions in 2D and computes PnP, but also employs
a final pose refinement. Similar to other methods, Cosy-
Pose [20] first uses an object detector to segment the image,
after which a novel pose estimation based on EfficientNet-
B3 [28] achieves state-of-the-art performance. In addition,
CosyPose can then use candidate poses from several images
to find a global pose refinement.
3D methods: In DenseFusion [32] initial segmentations

are found in 2D, and the 2D features are then integrated
with 3D features from PointNet [25] before a final PnP de-
termines the pose. Our method also employs PointNet, but
unlike DenseFusion our method can perform segmentation
and keypoint voting independently of 2D data. More simi-
lar to our method is PointVoteNet [7], which uses a single
PointNet network for pose estimation. However, unlike our
method, PointVoteNet combines segmentation and keypoint
voting into one output and does not utilize the Edge Fea-
ture from DGCNN [33]. Additionally, PointVoteNet is only
trained on real data and does not employ a 2D segmentation.
PVN3D [10] is a method that combines 2D CNN and point
cloud DNN into a dense feature. Similar to our approach,
keypoints are used for pose estimation. As opposed to our
method, which votes for a single keypoint per point, each
point votes for the position of nine keypoints. The method
performs very well on the LM dataset, but does not gener-
alize to the more challenging LMO dataset.

Synthetic data: Of the above mentioned methods only
SSD-6D [19] and DPOD [35] are trained purely on syn-
thetic data. Data is created by combining random back-
ground images with renders. An isolated instance of the
object is rendered, and this render is then overlaid on a ran-
dom background image from the COCO dataset [22]. While
this approach is simple and easy to integrate, it has certain
shortcomings. As the rendered image is overlaid on a back-
ground image, light conditions and occlusions of the ob-
ject will be arbitrary. Additionally, only 2D methods can
be used to train on such data, as any resulting depth map
would be nonsensical. For DPOD the performance gap is
quite clear, as the method trained on real data achieves a
performance of 95.2% recall, while the performance drops
to 66.4% when trained on synthetic data, tested on the LM
dataset [12]. For SSD-6D, the performance with synthetic
data is higher at 79%, but still far from the mid-nineties
of methods trained on real data. A method [30] trained on
synthetic depth data also exists. The objects are placed ran-
domly in the scene, and camera positions are chosen ac-
cording to the views in the dataset. The method applies
domain randomization, but in contrast to our method, it
is performed in 2D. The method does not perform well,
and achieves a 46.8% recall on the LM dataset [12]. For
the BOP challenge [15] synthetic data was created for each
dataset using BlenderProc [4]. In this approach, physical-
based-rendering (PBR) is performed by dropping objects
randomly in a scene, and randomizing camera pose, light
conditions, and object properties. This allows for more real-
istic noise, as shadows, occlusion, and reflections are mod-
eled, allowing for the training of 3D-based methods. Three
methods, EPOS [13], CDPN [21] and CosyPose [20] have
been trained on this data and tested on the BOP challenge
[15]. While our method is also trained on this data, we inte-
grate both RGB and depth data by training on point clouds.

936



(a) Initial Image. (b) Mask R-CNN results
and cluster centers.

(c) Background Segmenta-
tion.

(d) Keypoint Voting. (e) Final pose projected
into the image.

Figure 1: The pipeline of our developed method, shown in a zoomed-in view of image 10 for object 6 in the Linemod
(LM) dataset. From left to right: initial image, Mask R-CNN [9] and cluster detection with the four best clusters in green,
background segmentation, keypoint voting, and finally the found pose in the scene shown in green.

3. Method

The goal of our method is to estimate the 6D pose of a set
of known objects in a scene. The pose estimation process
is often hindered by the fact that the objects are occluded,
and the scenes contain high levels of clutter. This makes it
challenging to construct meaningful features that can match
the object in the scene to the model. When estimating a 6D
pose, the object is moving in 3D space. It is, therefore, nec-
essary to use 3D data to obtain precise pose estimates [5].
Methods using color based deep learning methods often em-
ploy depth data at the end-stage to refine the pose. However,
by employing depth in the full pose estimation pipeline, the
data can be integrated into the deep learning and, as we will
show, produce more accurate pose estimates.

Pose Estimation: On the basis of this, a method for
pose estimation using deep learning in point clouds has
been developed. The point cloud consists of both color
and depth information, along with surface normals. The
pose estimation is achieved by matching points in the point
cloud to keypoints in the object CAD model. This is per-
formed using a neural network based on a modified version
of DGCNN [33] explained in Sec. 3.2.

The network structure is set to handle point clouds with
2048 points, as for part segmentation in DGCNN [33], so
the point cloud needs to be this size. This is achieved by
subsampling a point sphere around a candidate point. The
point sphere size is based on the object diagonal to only
include point belonging to the object, but scaled to 120%
as the candidate point is not necessarily in the object cen-
ter. If there are more than 2048 points in the point cloud,
2048 points are randomly selected. If less than 2048 points
are present, the candidate point is rejected. However, as
the sphere radius is dependent on the object radius, smaller
objects result in smaller point clouds. Therefore, to avoid
rejecting these point clouds, objects with a diagonal under
120mm, allow point clouds with only 512 points, compared
with the standard 2048 points. The point cloud is given

as input to the network, and the network predicts both the
object’s presence, the background segmentation, and key-
point voting. An example of the network output is shown in
Fig. 1c and Fig. 1d. As the network is able to label whether
the object is present in the point cloud, the object search can
be performed entirely in 3D. However, this would be com-
putationally infeasible as a large number of spheres would
have to be sub-sampled and computed through the network.
The first step in the method is, therefore, a candidate detec-
tor based on Mask R-CNN [9]. To improve the robustness,
16 cluster centers spread over the mask are found as poten-
tial candidates. For each candidate point, point clouds are
extracted, and the network computes the probability that the
object is present. Expectedly, the 2D-based Mask R-CNN
also returns a number of false positives, and the 3D network
is able to filter out these, as shown in Fig. 1b. For the four
point clouds with the highest probability, the pose estima-
tion is performed using the background segmentation and
keypoint matches. The four best is selected to increase the
robustness. RANSAC is then performed on these matches,
and a coarse to fine ICP refines the position. Finally, using
the CAD model, a depth image is created by rendering the
object using the found pose. The generated depth image is
then compared with the depth image of the test scene. The
best pose for each object is thus selected based on this eval-
uation. The pose estimation inlier distance is set to 10mm,
this value is used for both the RANSAC, the ICP, and the
depth check. The coarse to fine ICP continues for three iter-
ations down to 2.5mm distance, with 10 iterations for each
level. The parameter values have been found empirically,
and a further study is shown in Sec. 4.4.

Set-up procedure: The first part of the set-up procedure
is the creation of keypoints. The object CAD model is sub-
sampled using a voxel-grid with a spacing of 25 mm, and
the remaining points are selected as keypoints. If more than
100 keypoints are present, the voxel-grid spacing is contin-
uously increased until no more than 100 points remain. The
training data used is synthetically rendered images from the

937



SEG

VOTE
CLASS

PointCloud

TN

Sparse-
EdgeMult Conv Conv Conv Conv Sparse-

Edge

MLP MLP MLP

Concat Conv

Conv

Conv MaxPoolConvSparse-
Edge

Conv

Concat Conv

Conv

Figure 2: The structure of the neural network. The network has three outputs (shown as circles). The output CLASS is
described in Sec. 3.2. The output SEG and VOTE are described in Sec. 3.3. The SparseEdge feature is described in Sec. 3.4.
The MaxPool layer is used for the classification, while both the MaxPool and Concat layers are used for the segmentation
and vote prediction. The input PointCloud is obtained from Mask R-CNN candidate detector, and the outputs are used by
RANSAC to determine pose estimates. TN is the transform net introduced in [25].

BOP challenge [15] generated using BlenderProc [4]. The
CAD model is projected into the scene, and points belong-
ing to the object are found. The keypoints are also pro-
jected, and the nearest keypoint is found for each point.
Point clouds are extracted from this by choosing random
points and determining the label based on whether the point
belongs to the object. For each image, seven point clouds
are extracted, with four positive labels and three negatives.
To create hard negatives for the network, one of the negative
labels is found by selecting a point with a distance between
20-40 mm to the object. For each object the full process
continues until 40000 point clouds have been collected for
training. The network training is described in Sec. 3.6, with
the applied domain randomization described in Sec. 3.5.

3.1. Candidate Detector

To speed up the detection process, Mask R-CNN [9] is
used for an initial segmentation of the objects. The network
is trained to predict an image mask of the visible surface of
all objects in the scene, which we then use to get a number
of candidate point clouds for the subsequent stages.

Instead of using a hard threshold for detected instances,
we always return at least one top instance detection along
with all other detections with a confidence above the stan-
dard threshold of 0.7. To train the network, the same syn-
thetic data source is used, but now with image-specific ran-
domizations. The images are randomly flipped horizontally
and Gaussian blurring and noise are added with a standard
deviation of, respectively 1.0 and 0.05. Additionally, hue
and saturation shifts of 20 are added. Apart from this, the
parameters are set according to the MASK R-CNN imple-
mentation [1]. It is initialized with weights trained on the
COCO dataset [22], and is trained for 25 epochs. However,
as the TUDL [14] dataset only contains three objects it is
trained much faster, and 50 epochs are used instead.

3.2. Network Structure

The network structure for our method is shown in Fig. 2.
While the network shares similarities with DGCNN [33],
e.g. the size of each layer is the same, several differences
exist. As opposed to DGCNN, which has a single output of
either classification or segmentation, our network can out-
put three different predictions simultaneously: point cloud
classification, background segmentation and keypoint vot-
ing. The networks ability to perform point cloud classifica-
tion and background segmentation makes it less dependent
on the candidate detector. Even if false positives are pre-
sented to the network, it can filter out wrong point clouds.
As the background segmentation and keypoint votes are
split into two different tasks, the network is able to learn
object structure independently of the keypoint voting. This
makes it easier to train the network on symmetric objects
where the actual keypoint voting is difficult.

3.3. Vote Threshold

Before the network output of background segmentation
and keypoint voting can be used with the RANSAC algo-
rithm, they need to be converted to actual matches between
scene points and object keypoints. The point cloud can be
represented as a matrix P , consisting of n points p. For
each point pi in the point cloud, the network returns s(pi),
representing the probability of belonging to the object vs.
background. We use a lower threshold of 0.5 for classifying
foreground objects.

The network also returns the keypoint vote matrix V of
size n × m, where m is the number of keypoints in the
model. For each point we then have the vector of proba-
bilities V (pi). The highest value in V (pi) is the keypoint
vote which the point pi is most likely to belong to. How-
ever, the probability distribution cannot always be expected
to be unimodal. In the case of objects which appear sym-

938



metric from certain views, a point is equally likely to be-
long to multiple keypoints [13]. To account for this uncer-
tainty in our model, a scene point is allowed to vote for
multiple keypoints. The approach is shown in Eq. 1. For
each vj(pi) ∈ V (pi) a softmax is applied and if any vote
is higher than the maximum with an applied weight τ , it is
accepted:

vj(pi) > τ · m
max
k=1

(vk(pi)) (1)

This allows for similar keypoints to still count in the voting
process, relying on RANSAC to filter out erroneous votes.
In all experiments, we use τ = 0.95.

3.4. SparseEdge Feature

The edge feature introduced in DGCNN [33] allows
PointNet-like networks [25] to combine point-wise and lo-
cal edge information through all layers. By using this edge
feature, DGCNN significantly increased the performance
compared to PointNet. The edge feature consists of two
components, a k-NN search locating the nearest points or
features, followed by a difference operator between the cen-
ter point and its neighbors. The end result is a k × i feature
where k is the number of neighbors and i is the dimension
of the point representation in a layer. As the data structure
from real scans is noisy, it is desirable to have a larger search
space for neighbors. An increased search space will allow
the method to learn a broader range of features, not only
relying on the closest neighbour points. However, this in-
creased representation capacity will also increase the com-
putation time of the network.

To overcome this, we introduce the SparseEdge feature.
The SparseEdge feature is made to maintain the perfor-
mance of the edge feature, but with less run-time. Instead
of selecting the k nearest neighbors, a search is performed
with 3k neighbors, and from these, a subset of k is then se-
lected. The method is shown in Fig. 3. At training time
the k neighbors are selected randomly while at test time the
feature is set to select every third in the list of neighbors,
sorted by the distance to the center point. The random se-
lection at training time ensures that the network does not
pick up specific features. In our experiments, k is set to 10.
The effectiveness of the SparseEdge is validated in Sec. 4.4.

3.5. Sensor-Based Domain Randomization

The synthetic training data is generated using Blender-
PROC [4]. As the training data is obtained by synthetic ren-
dering, a domain gap will exist between the training and test
data. During rendering, some of the standard approaches
for modeling realistic variations are included. This includes
placing the objects in random positions and using random
camera positions. Additionally, different types of surface
material and light positions are added to the simulation,
but only to the RGB part. The only disturbances on the

Figure 3: Example of the SparseEdge feature selection with
k = 10. The plus sign shows the center point of the k-NN.
While, the standard approach select the points within the
two dashes, our method select the points with white centers.

Figure 4: Example of the data sampling and domain ran-
domization employed in this paper. From top left: CAD
model of the object, object in the rendered scene, sampled
point cloud, three visualizations of domain randomization
applied to the point cloud.

depth part are occlusions and clutter in the simulations [4].
From the given simulated RGB-D data, we reconstruct point
clouds with XYZ positions, RGB values, and estimated sur-
face normals. The XYZ values are defined in mm, while the
remaining are normalized to [0, 1]. The standard approach
for data augmentation in point clouds is a Gaussian noise
with σ = 0.01 [25, 33]. As the general approach is to nor-
malize the point cloud size, the standard for the XYZ devi-
ation amounts to 1% of the point cloud size.

For this paper the focus is on depth sensors like the
Kinect with a resolution of 640x480 px. The sensor model
is based on the Kinect sensor [36]. Extensive analyses of
the error model of the Kinect sensor have been performed
[23, 3]. Modelling realistic noise is very difficult as the sur-
face properties are unknown, and non-Lambertian reflec-

939



tions can cause highly non-Gaussian noise. Additionally,
we face the problem that the provided CAD models do not
perfectly model the 3D structure and surface texture of the
objects. The goal is, therefore, not to model the noise cor-
rectly, but to model noise that gives the same error for the
pose estimation. A model trained with this noise will then
generalize better to the real test data.

From the noise model one noteworthy aspect is that the
error for each pixel is Gaussian and independent of its
neighbors [3]. Another important aspect is that the error
depends on the angle and distance to the camera [23]. The
angular error is mostly insignificant when lower than 60◦

and then drastically increases. The angular error is, there-
fore, regarded as a point dropout, and is omitted in the noise
model. The noise level can, therefore, be described as Eq. 2
[23], where the constants are derived empirically.

σz(z) = 0.0012 + 0.0019(z − 0.4)2 (2)

The distance to the objects in the datasets is between 0.3
and 2.0 meters. From Eq. 2 this gives noise levels of 1.5 mm
to 6 mm. The selected z distance is chosen to be 1.45 meters
as this is the average maximum distance of the five tested
datasets in this paper. Given z = 1.45 the returned noise
level from the formula is approximately 3 mm, which is
added as Gaussian noise to the XYZ part of the point cloud.

Additionally, a zero-centered Gaussian noise with a σ
of 0.06 is added randomly to the color values and the nor-
mal vectors. To handle overall color differences in the CAD
model texture, all RGB values in the point cloud are also
shifted together with a σ of 0.03. To increase generaliza-
tion, random rotations are applied to the point clouds. These
rotations are limited to 15◦ so the object rotations remain
towards the camera as in the real test images. As the real
test background is unknown, it is desirable also to learn the
object structure independently of any background. To en-
able this, half of point clouds with the object present have
all background points removed.

The process of sampling the training data and applying
the domain randomization is shown in Fig. 4. The effect of
the domain randomization is validated in Sec. 4.4.

3.6. Multi-Task Network Training

As three different outputs are trained simultaneously, a
weighing of the loss terms is required. The split is set ac-
cording to the complexity of the different tasks, with the
weights set at wl = 0.12, ws = 0.22, wv = 0.66 for
point cloud label, background segmentation, and keypoint
voting, respectively. An additional loss, LMD, is added
for the Transform Matrix as according to [25], with weight
wMD = 10−3. The full loss is shown in Eq. 3.

Ltotal = wlLl + wsLs + wvLv + wMDLMD (3)

Here Ll is the label loss found by the cross entropy be-
tween the correct label and the softmax output of the predic-
tion. The loss for the background segmentation Ls is found
in Eq. 4, where H is the cross entropy, si is the correct seg-
mentation for a point, qi,seg is the softmax of segmentation
predictions for a point, and n is the number of points in the
point cloud.

Ls =

∑n
i H(si, qi,seg)

n
(4)

When computing the keypoint voting loss, Lv , only the
loss for points belonging to the object is desired. This is
achieved by using si which returns zero or one, depending
on whether the point belongs to background or object, re-
spectively. The loss is thus computed as in Eq. 5, where
qi,vote is the softmax of the keypoint vote, and vi is the cor-
rect keypoint.

Lv =

∑n
i H(vi, qi,vote)si∑n

i si
(5)

The network is trained with a batch size of 48 over 40
epochs. For each object, the dataset consists of 40000
point clouds, making the complete number of training steps
1600000. The learning rate starts at 0.001 and is clipped
at 0.00005, with a decay rate of 0.5 at every 337620 steps.
Batch normalization [17] is added to all convolutional lay-
ers in the network, with parameters set according to [33].

4. Evaluation
To verify the effectiveness of our developed method, and

the ability to generalize to real data, we test on several
benchmarking datasets. The methods compared against are
all explained in Sec. 2. The method is tested on the popular
LM [12] and LMO [2] datasets. As the synthetic data is ob-
tained using the method introduced for the BOP challenge
[15], the method is also compared with other methods us-
ing this synthetic data. The same trained weights were used
to test both the LM and the LMO dataset, and the same
weights were also used for the LM and LMO parts of the
BOP challenge. An ablation study is also performed to ver-
ify the effect of our contributions, the sensor-based domain
randomization, and the SparseEdge feature.

4.1. Linemod (LM) and Occlusion (LMO)

The LM dataset [12] presents 13 objects, one object in
each scene, with high levels of clutter, and some levels of
occlusion. For each object, approximately 1200 images are
available. The general procedure for training on the LM
dataset is to use 15% of the dataset for training, around 200
images, and test on the remaining 85%. However, as we
have trained only on synthetic data, our method is tested
both using the 85% split and using all images in the dataset;

940



Training
Data Real Synthetic

Modality RGB RGB-D RGB-D
[24] [32] [35] [7] [10] [35] [19] Ours

Ape 43.6 92 87.7 80.7 97.3 55.2 65 97.7
Bench v. 99.9 93 98.5 100 99.7 72.7 80 99.8
Camera 86.9 94 96.1 100 99.6 34.8 78 98.3
Can 95.5 93 99.7 99.7 99.5 83.6 86 98.8
Cat 79.3 97 94.7 99.8 99.8 65.1 70 99.9
Driller 96.4 87 98.8 99.9 99.3 73.3 73 99.2
Duck 52.6 92 86.3 97.9 98.2 50.0 66 97.8
Eggbox* 99.2 100 99.9 99.9 99.8 89.1 100 97.7
Glue* 95.7 100 96.8 84.4 100 84.4 100 98.9
Hole p. 81.9 92 86.9 92.8 99.9 35.4 49 94.1
Iron 98.9 97 100 100 99.7 98.8 78 100
Lamp 99.3 95 96.8 100 99.8 74.3 73 92.8
Phone 92.4 93 94.7 96.2 99.5 47.0 79 99.1
Average 86.3 94.3 95.15 96.3 99.4 66.4 79 98.0

Table 1: Results for the LM dataset [12] in % accuracy with
the ADD/I score. The competing methods are DPOD [35],
SSD-6D [19] (obtained from [32]), PVNet [24], DenseFu-
sion [32], PointVoteNet [7] and PVN3D [10]. Rotation in-
variant objects are marked with an *.

Training
Data

Real Synthetic

Modality RGB RGB-D RGB-D
[34] [24] [34] [7] [10] Ours

Ape 9.60 15.0 76.2 70.0 33.9 66.1
Can 45.2 63.0 87.4 95.5 88.6 91.5
Cat 0.93 16.0 52.2 60.8 39.1 60.7
Driller 41.4 25.0 90.3 87.9 78.4 92.8
Duck 19.6 65.0 77.7 70.7 41.9 71.2
Eggbox* 22.0 50.0 72.2 58.7 80.9 69.7
Glue* 38.5 49.0 76.7 66.9 68.1 71.5
Hole p. 22.1 39.0 91.4 90.6 74.7 91.5
Average 24.9 40.8 78.0 75.1 63.2 77.2

Table 2: Results on the LMO dataset [2] in % accuracy with
the ADD/I score. The score for [10] is from [11]. Rotation
invariant objects are marked with an *.

RGB RGB RGB-D RGB D RGB-D
[13] [21] [21] [20] [31] Ours

LMO 54.7 62.4 63.0 63.3 58.2 68.4
TUDL 55.8 58.8 79.1 68.5 87.6 78.2
HB 58.0 72.2 71.2 65.6 70.6 68.7
YCBV 49.9 39.0 53.2 57.4 45.0 58.5
Avg. 54.6 58.1 66.6 63.7 65.4 68.2

Table 3: Results in % using the BOP metric for methods
trained on synthetic training data on the four single instance
multiple object (SiMo) datasets of the BOP 2020 challenge:
LMO [2], TUDL [14], HB [18], and YCBV [34]

the resulting score is the same. The test results are shown
in Tab. 1, including other recent methods trained on both
real and synthetic data. Our method clearly outperforms
other methods using synthetic data and outperforms most
methods using real training data. In the LMO dataset, eight

objects from the LM dataset have been annotated, many
of these with very high levels of occlusion. The general
procedure for testing deep learning algorithms on the LMO
dataset is to use the full LM dataset for training each object,
giving approximately 1200 training images for each object.
Our method is the only one tested on the LMO dataset us-
ing only synthetic training. The result on the LMO dataset
is shown in Tab. 2. Our method is comparable with state-
of-the-art methods using real training data. Compared with
PVN3D [10] which achieved the highest score on the LM
dataset, but low scores on the LMO dataset, our method per-
forms well for both datasets.

Our results show that a single method trained with syn-
thetic data, without any changes in parameters can achieve
very good results in two different scenarios.

4.2. BOP Challenge on SiMo datasets

The synthetic training data was generated for the BOP
challenge [15], and several other algorithms have also been
trained on this data. To further validate our work, we com-
pare it against these other methods.

The BOP challenge consists of seven different datasets
where the performance is measured for each dataset. As
our method is created for single instance pose estimation,
the four datasets with this configuration are retrieved, and
an average is calculated. The BOP challenge score is based
on an average of three metrics [15], making the compari-
son with 2D methods more equal. We use the same metric
to calculate our performance. We include the results for all
methods trained on the synthetic data from the competition
as well as last year’s winner [31]. The results are shown in
Tab. 3. It is seen that our method is able to outperform other
methods trained on the synthetic data along with last year’s
best-performing method. Visual examples of our pose es-
timation are shown for different images in the BOP bench-
mark in Fig. 5. While the main challenge [15] does not
include the LM dataset, the associated web page contains
a leaderboard1 with results. Our method was tested on this
dataset with the above-mentioned metric, and the resulting
average BOP-specific score was 85.8%. This outperforms
the current best method [35], which has a score of 75.2%,
and is trained with real data.

4.3. Running Time

For a scene with a single object, the full process includ-
ing pre-processing, given a 640x480 RGB-D image, takes
approximately 1 second on a PC environment (an Intel i9-
9820X 3.30GHz CPU and an NVIDIA GeForce RTX 2080
GPU). For the LMO dataset with eight objects in the scene
the run-time is around 3.6 seconds. The time distributions
for the different parts of the method is shown in Tab. 4.

1https://bop.felk.cvut.cz/leaderboards/bop19_lm

941



Part Preproc.
Mask

R-CNN
DNN

RANSAC
+ ICP

Depth
Check

% Time 15 8 24 49 4

Table 4: Percentage of time used in of our pipeline.

Number of Cluster Centers (CC) and number of Clus-
ters Tested (CT): As increasing either CC and CT will in-
crease the run-time, a selection of the best parameter values
is necessary. These are tested on the LMO dataset. In Tab. 5
CT is fixed at 4 and CC is varied. In Tab. 6 CC is fixed at
16 and CC is varied. In our implementation, the number of
CC and CT is set to 16 and 4, respectively, as the optimal
trade-off between performance and speed.

Cluster Centers 4 8 16 32 64
Run-time (s) 2.6 3.0 3.6 4.8 7.2
Recall 73.8 76.2 77.2 77.1 77.3

Table 5: Recall and run-time as a result of cluster centers.

Clusters Tested 1 2 4 6 8 16
Run-time (s) 2.2 2.7 3.6 4.4 5.7 8.0
Recall 73.9 76.0 77.2 77.5 77.4 76.0

Table 6: Recall and run-time as a result of clusters tested.

4.4. Ablation Studies

To verify the effect of our contributions, ablation stud-
ies are performed. The test is performed by removing the
contribution, retraining the network and testing against the
baseline performance. The ablation studies are performed
on the LMO dataset with eight objects and 1214 images,
where the baseline is 77.2% accuracy (Tab. 2).
Domain randomization: To verify the effect of our do-
main randomization, the network is trained with standard
randomization [25] and without randomization. The Mask
R-CNN network is the exact same for all tests. With-
out domain randomization the average score is 69.8% and
with standard domain randomization it is 74.4%. The
sensor-based domain randomization thus improves the per-
formance by 11.1% compared with no domain randomiza-

tion and 3.7% compared with standard domain randomiza-
tion, both in relative numbers. If the noise level of the stan-
dard domain randomization is increased the score drops.

A more elaborated distribution of the individual parts of
the ablation study is shown Tab. 7. While the typical jit-
ter provides some generalization, the geometric noise types
(XYZ and rotation) contribute most to the generalization
and are needed to achieve optimal results.

Removed None XYZ Rot. RGB Jit. All
Recall 77.2 73.1 76.1 77.0 76.9 69.8

Table 7: The performance on the LMO dataset for networks
trained without specific Domain Randomization types.

SparseEdge feature: Our SparseEdge method is compared
with the standard edge feature from DGCNN [33], both
with k = 10 and k = 30. For k = 10 the score is 75.4% and
the run-time is 3.4s. For k = 30 run-time rises to 4.1s while
the score goes up to 76.9%. For our method the run-time is
3.6s with a relative 2.4% better performance than k = 10
and the score is still higher than when using k = 30. The in-
creased performance of the SparseEdge could indicate that
a higher generalization is obtained.

5. Conclusion
We presented a novel method for pose estimation trained

on synthetic data. The method finds keypoint matches
in 3D point clouds and uses our novel SparseEdge fea-
ture. Combined with our sensor-based domain random-
ization, the method outperforms previous methods using
purely synthetic training data and achieves state-of-the-art
performance on a range of benchmarks. An ablation study
shows the significance of our contributions to the perfor-
mance of the method.

For future work, instance segmentation can be added to
the point cloud network. This, along with training a single
network to predict keypoint votes for multiple objects, will
allow us to pass an entire scene point cloud through the net-
work for a single pass pose estimation of multiple objects.
Acknowledgements The authors gratefully acknowledge
the support from Innovation Fund Denmark through the
project MADE FAST.

(a) LMO - Scene 2 - Image 13 (b) TUDL - Scene 1 - Image 65 (c) YCB-V - Scene 54 - Image 38

Figure 5: Examples of pose estimations in the BOP dataset with our method. For each image the original image is shown to
the left with the pose estimation shown in right image. Successful pose estimates are shown in green and erroneous in red.

942



References
[1] Waleed Abdulla. Mask r-cnn for object detection and in-

stance segmentation on keras and tensorflow. https://
github.com/matterport/Mask_RCNN, 2017. 4

[2] Eric Brachmann, Alexander Krull, Frank Michel, Stefan
Gumhold, Jamie Shotton, and Carsten Rother. Learning
6d object pose estimation using 3d object coordinates. In
European conference on computer vision, pages 536–551.
Springer, 2014. 2, 6, 7

[3] Benjamin Choo, Michael Landau, Michael DeVore, and Pe-
ter A Beling. Statistical analysis-based error models for
the microsoft kinecttm depth sensor. Sensors, 14(9):17430–
17450, 2014. 5, 6

[4] Maximilian Denninger, Martin Sundermeyer, Dominik
Winkelbauer, Youssef Zidan, Dmitry Olefir, Mohamad El-
badrawy, Ahsan Lodhi, and Harinandan Katam. Blender-
proc. arXiv preprint arXiv:1911.01911, 2019. 2, 4, 5

[5] Bertram Drost, Markus Ulrich, Paul Bergmann, Philipp
Härtinger, and Carsten Steger. Introducing mvtec itodd-a
dataset for 3d object recognition in industry. In ICCV Work-
shops, pages 2200–2208, 2017. 3

[6] Kartik Gupta, Lars Petersson, and Richard Hartley. Cullnet:
Calibrated and pose aware confidence scores for object pose
estimation. In Proceedings of the IEEE International Con-
ference on Computer Vision Workshops, pages 0–0, 2019. 1

[7] Frederik Hagelskjær and Anders Glent Buch. Pointvotenet:
Accurate object detection and 6dof pose estimation in point
clouds. In 2020 IEEE International Conference on Image
Processing (ICIP), 2020. 2, 7

[8] Frederik Hagelskjær, Anders Glent Buch, and Norbert
Krüger. Does vision work well enough for industry? In
Proceedings of the 13th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory
and Applications, volume 4, pages 198–205. SCITEPRESS
Digital Library, 2019. 1

[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 2,
3, 4

[10] Yisheng He, Wei Sun, Haibin Huang, Jianran Liu, Haoqiang
Fan, and Jian Sun. Pvn3d: A deep point-wise 3d keypoints
voting network for 6dof pose estimation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11632–11641, 2020. 2, 7

[11] Yisheng He, Wei Sun, Haibin Huang, Jianran Liu, Haoqiang
Fan, and Jian Sun. Supplementary material–pvn3d: A deep
point-wise 3d keypoints voting network for 6dof pose esti-
mation. 2020. 7

[12] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-
fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.
Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In Asian
conference on computer vision, pages 548–562. Springer,
2012. 1, 2, 6, 7

[13] Tomas Hodan, Daniel Barath, and Jiri Matas. Epos: Estimat-
ing 6d pose of objects with symmetries. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11703–11712, 2020. 2, 5, 7

[14] Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl,
Anders GlentBuch, Dirk Kraft, Bertram Drost, Joel Vidal,
Stephan Ihrke, Xenophon Zabulis, et al. Bop: Benchmark
for 6d object pose estimation. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 19–34,
2018. 4, 7

[15] Tomas Hodan, Martin Sundermeyer, Bertram Drost, Yann
Labbe, Eric Brachmann, Frank Michel, Carsten Rother, and
Jiri Matas. Bop challenge 2020 on 6d object localization.
arXiv preprint arXiv:2009.07378, 2020. 1, 2, 4, 6, 7

[16] Yinlin Hu, Pascal Fua, Wei Wang, and Mathieu Salzmann.
Single-stage 6d object pose estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2930–2939, 2020. 1

[17] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. 6

[18] Roman Kaskman, Sergey Zakharov, Ivan Shugurov, and Slo-
bodan Ilic. Homebreweddb: Rgb-d dataset for 6d pose es-
timation of 3d objects. In Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops, pages
0–0, 2019. 7

[19] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobo-
dan Ilic, and Nassir Navab. Ssd-6d: Making rgb-based 3d
detection and 6d pose estimation great again. In IEEE Inter-
national Conference on Computer Vision, pages 1521–1529,
2017. 2, 7

[20] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef
Sivic. Cosypose: Consistent multi-view multi-object 6d pose
estimation. arXiv preprint arXiv:2008.08465, 2020. 2, 7

[21] Zhigang Li, Gu Wang, and Xiangyang Ji. Cdpn:
Coordinates-based disentangled pose network for real-time
rgb-based 6-dof object pose estimation. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 7678–7687, 2019. 2, 7

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 2, 4

[23] Chuong V Nguyen, Shahram Izadi, and David Lovell. Mod-
eling kinect sensor noise for improved 3d reconstruction and
tracking. In 2012 second international conference on 3D
imaging, modeling, processing, visualization & transmis-
sion, pages 524–530. IEEE, 2012. 5, 6

[24] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hu-
jun Bao. Pvnet: Pixel-wise voting network for 6dof pose
estimation. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 4561–4570, 2019. 2, 7

[25] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 652–660, 2017. 2, 4, 5, 6, 8

[26] Mahdi Rad and Vincent Lepetit. Bb8: A scalable, accurate,
robust to partial occlusion method for predicting the 3d poses

943



of challenging objects without using depth. In IEEE Inter-
national Conference on Computer Vision, pages 3828–3836,
2017. 2

[27] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 2

[28] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019. 2

[29] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. Real-time
seamless single shot 6d object pose prediction. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 292–301, 2018. 2

[30] Stefan Thalhammer, Timothy Patten, and Markus Vincze.
Towards object detection and pose estimation in clutter us-
ing only synthetic depth data for training. In Proceedings of
ARW and OAGM Workshop 2019, 2019. 1, 2

[31] Joel Vidal, Chyi-Yeu Lin, Xavier Lladó, and Robert Martı́.
A method for 6d pose estimation of free-form rigid objects
using point pair features on range data. Sensors, 18(8):2678,
2018. 7

[32] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martı́n-Martı́n,
Cewu Lu, Li Fei-Fei, and Silvio Savarese. Densefusion: 6d
object pose estimation by iterative dense fusion. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 3343–3352, 2019. 1, 2, 7

[33] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics, 2019. 1, 2, 3, 4, 5, 6, 8

[34] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network for 6d
object pose estimation in cluttered scenes. Robotics: Science
and Systems, 2018. 2, 7

[35] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. Dpod:
6d pose object detector and refiner. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1941–1950, 2019. 1, 2, 7

[36] Zhengyou Zhang. Microsoft kinect sensor and its effect.
IEEE multimedia, 19(2):4–10, 2012. 5

944


