Prior Aided Streaming Network for Multi-task Affective Analysis

Wei Zhang*, Zunhu Guo*, Keyu Chen*, Lincheng Li, Zhimeng Zhang, Yu Ding†, Runze Wu, Tangjie Lv, Changjie Fan

Virtual Human Group, Netease Fuxi AI Lab

Abstract

Automatic affective recognition has been an important research topic in the human-computer interaction (HCI) area. With the recent development of deep learning techniques and large-scale in-the-wild annotated datasets, facial emotion analysis is now aimed at challenges in real world settings. In this paper, we introduce our submission to the 2nd Affective Behavior Analysis in-the-wild (ABAW2) Competition. In dealing with different emotion representations, including Categorical Expression (EXPR), Action Units (AU), and Valence Arousal (VA), we propose a multi-task streaming network by a heuristic that the three representations are intrinsically associated with each other. Besides, we leverage an advanced facial expression embedding model as prior knowledge, which is capable of capturing identity-invariant expression features while preserving the expression similarities, to aid the down-streaming recognition tasks. In order to enhance the generalization ability of our model, we generate reliable pseudo labels for unsupervised training and adopt external datasets for fine-tuning. In the official test of ABAW2 Competition, our method ranks first in the EXPR and AU tracks and second in the VA track. The extensive quantitative evaluations, as well as ablation studies on the Aff-Wild2 dataset, prove the effectiveness of our proposed method.

1. Introduction

Recognizing and analyzing facial affective statements from human behaviors is a long-standing problem in the intersection area of the computer science and psychology community. An ideal human-computer interaction system is expected to capture the vivid human emotions, mostly conveyed by facial performances, and to react respectively. Because of the diverse environments and varying contexts where emotions occur, the perception of facial effectiveness is always natural to our human beings but never straightfor-
sion. Despite the traditional facial expression recognition (FER) models have regressed continuous expression distributions for discrete classification, they can hardly encode the fine-grained expression features. In this work, we adopt the triplet-based expression embedding model [13] as the backbone of the entire framework. Since the expression embedding is trained to distinguish minor expression similarities between different subjects, it can provide powerful expression-related priors to the high-level emotion recognition task.

In participating in the ABAW2 Competition, we conduct extensive experiments on the Aff-Wild2 [3] dataset. Because of the multi-task framework and streaming design, each module of our network can be fine-tuned on images with no need for all three emotion representation labels to exist. In order to improve the generalization ability of our multi-task model, we extend the training dataset with BP4D [5], DFEW [14] and AffectNet [15]. Besides, we produce reliable pseudo labels on the unsupervised data for augmentation, which is proved as a useful trick to enhance the performance.

In sum, the contributions of this work are three-fold:

- We propose a streaming network to handle the multi-task affect recognition problem. By heuristically designing the regression order, the streaming structure allows exploiting inner relationships across different emotional representation spaces.

- We employ an identity-invariant expression prior model as the backbone. With fine-grained expression-related features, our network can well capture the high-level information for the emotional recognition tasks.

- By using the external datasets and producing reliable pseudo labels on the unsupervised data, we manage to fine-tune our model and achieve better performance. The extensive experimental results, along with the competition scores, prove the superiority of our method.

2. Related Works

In this section, we briefly review some concepts, works, and datasets related with the affective recognition problem.

2.1. Facial Expression Representation

Representing human emotions is a fundamental research topic in the affective behavior analysis area. There are three common used facial expression representations: the seven basic emotion categories [16], the Action Units (AUs) defined by the Facial Action Coding System [17] and the two dimensional Valence and Arousal (VA) Space [18]. The seven basic emotions include Anger, Disgust, Fear, Happiness, Sadness, Surprise and Neutral. AUs [17] include 32 atomic facial action descriptors based on facial muscle groups, which facilitate the physical and fine-grained understanding of human facial expressions. The detection of facial AU occurrence offers crucial information for emotion recognition [19], micro-expression detection [20], and mental health diagnosis [21]. In VA space, the valence represents the degree of emotionalpositiveness/negativeness and the arousal indicates whether the emotion is passive or active.

Besides, there is another branch of representation methods that tries to model the facial expressions by latent codes. FECNet [22] first proposes to learn a continuous and compact embedding space from facial images. Later, DLN [13] extends this idea by considering the identity attributes and thus proposes a disentangled framework for expression embedding learning. Apart from that, the expression embedding representation has also achieved promising results in terms of capturing fine-grained expression similarities and promoting the other emotion recognition tasks.

2.2. Automatic Affective Behavior Analysis

The ABAW2 Challenge [12] attracts a lot of research efforts into the automatic affective analysis area. Here we first review some submitted works to the competition. NISL-2021 team wins the first prize in the VA task with a model consisting of four transformer layers and a backbone of MobileFaceNet [23]. The CPIC-DIR2021 team [24] extracts multi-modal information from audio and visual signals and trains a multi-task network for the AU and EXPR recognition task, winning second place in both tracks. Maybe Next Time [25] uses a pre-trained ResNet-50 [26] as the backbone and proposes a collaboration training strategy for the AU and EXPR task, achieving third place in both tracks. Morphoboid [27] proposes a teacher-student model for the VA and EXPR task and ranks third place in the VA track.

Apart from the competition, there are many research works focusing on AU detection, expression recognition and VA regression in general scenarios. For AU detection, the previous works [28, 29, 30] first adopt facial landmarks as auxiliary information. Some recent works [31, 32, 33, 34, 35, 36, 37] also exploits the inner-dependencies among different AUs. Specifically, Li et al. [31] and Niu et al. [38] learn a constant graph for AU relation modeling. Song et al. [36] proposes to produce the hybrid graphs based on a random sampling method. Yang et al. [37] extracts the AU embeddings from textual descriptions with intra- and inter-attention mechanisms. In terms of facial expression recognition, Li et al. [39] and Wang et al. [40] propose to use region-based attention networks to alleviate occlusion problem. Considering the uncertainty that comes from inconsistent and incorrect annotations, Zeng et al. [41] attempts to automatically re-label the uncertain samples for robust expression recognition. For VA regression, Mehu et
al. [42] observes that some AUs are sensitive to the VA value. Consequently, Chang et al. [43] proposes a method to filter some distinctive AU features for VA regression. However, until recently, there exist few works trying to tackle the multiple tasks simultaneously. With the collection of large-scale in-the-wild affective dataset, Kollias et al. [44, 45] proposes to jointly predict the three emotional modalities with one model.

2.3. Affective Recognition Dataset

3. Method

In this section, we introduce our method for affective behavior analysis in the ABAW2 Competition. The overall pipeline is illustrated in Fig. 1. The entire framework consists of two components: a prior model for extracting prior expression embedding knowledge, and a streaming model for exploiting the hierarchical relationships among three emotional representations.

3.1. Overview

As described in the official white paper [12], the ABAW2 Competition contains three challenges, corresponding to the three commonly used emotion representations: seven basic expression recognition, twelve action units, and two-dimensional valence and arousal space. We propose a general framework to jointly handle the three individual tasks. Despite the different psychological research backgrounds of the three emotional representations, it is widely agreed that the representations are intrinsically associated with each other [46]. One of the evidence is that similar facial muscle movements (action units) mostly indicate similar inner statements, and so do the perceived facial emotions. However, most previous research works on multi-task emotion recognition omit this fact and they just model the different tasks in parallel branches. Inspired by the observation above, we design the recognition process in a serial manner AU→EXPR→VA, from local action units to global emotion statements. The streaming structure is helpful to adjust the hierarchical distributions on different feature levels. For example, the optimizing energy from the most high-level VA space should be back-propagated to the low-level features and thus help the other two tasks in training.

Due to the limited subjects and unbalanced annotations of existed affective datasets, it is a challenging issue to prevent the emotion recognition model from overfitting on the disturbing factors, like image background or random noise. To tackle this problem, we adopt a prior facial expression embedding model [13], which can capture the detailed expression similarities across different people, into our framework. The expression embedding model [13] brings at least two advantages. First, by training on even larger facial image datasets with the identity invariant constraint, the embedding itself is independent of the identity attributes as well as the other low-level noisy factors, and therefore can improve the network’s generalizability to unseen subjects. Second, the expression embedding model [13] is targeted for discriminating the minor expression similarities within triplet training data. It provides a nice initialization for our latter emotion recognition tasks.

Combining with the prior and the streaming model, we train our multi-task affective recognition model in an end-to-end manner. Given an image I with at least one of the three emotional annotations, we send it to the full network for training and compute corresponding losses on its existed labels. In the following, we will introduce the network structure and loss functions in detail.

3.2. Prior Model

We adopt the pre-trained Deviation Learning Network (DLN) from [13] as the expression prior model to our framework. In order to generate a compact and continuous expression embedding space disentangled from the identity factor, the DLN model has been trained on more than 400k annotated triplets from the FECNet dataset [22].

Following the idea from [22, 47], the DLN aims to map the similar expression image pair (anchor and positive) close to each other in the low-dimensional space, while keep the dissimilar expression image pair (anchor and negative) away from each other (See Fig. 2). To efficiently exclude the identity attributes from the extracted image features, the DLN model proposes a deviation module by subtracting the identity vectors (produced by a pre-trained face recognition model) from the facial ones.

Since the original DLN model maps the facial expression images into a 16-dimensional space, which leaves quite tight room for optimization in our problem, we only take the pre-trained deviation module from [13] that produces 512-dimensional features. Specifically, given a facial image I from the training dataset, the prior model is expected to generate a 512-dimensional embedding vector Emb that
contains identity-invariant expression information. In training the entire framework, we also make the expression embedding model to be trainable and adaptively adjust the embedding vectors. The prior model serves as a useful backbone for direct expression feature extraction, which is further proved to be very helpful to boost the downstream tasks.

3.3. Streaming Model

We design the multi-task affective recognition model in a streaming structure. Specifically, following the prior generated expression embedding, we first construct three individual feature extractors to downsample the expression-related feature \(\text{Emb} \) from 512 to 12 × 16, 64, 64, respectively. After that, two streaming modules are responsible for translating the features by the pre-defined order \(\text{AU} \rightarrow \text{EXPR} \rightarrow \text{VA} \). At each stage, the individually extracted feature and the translated one will be concatenated together and sent to the corresponding predicting module for loss calculation (if the corresponding ground-truth label exists). The three predictors are all made of several MLP layers along with activation units, producing the final output vectors of dimension 12, 7 and 2, respectively. In the following, we will introduce the detailed model structure as well as training losses for each task.

AU Detection. We set the AU detection task as an initial step in our streaming network. Because AU detection is target for capturing the local signals within facial movements, it actually plays a fundamental role within the affective analysis process. For AU features in \(\mathbb{R}^{12 \times 16} \), we directly send it into a multilayer perceptron (MLP) predictor to predict the probability for each AU. In practice, the direct output of the MLP is \(S = \{s_1, s_2, ..., s_{12}\} \in \mathbb{R}^{12} \) without scaling. The AU probability \(\mathcal{Y} = \{y_1, y_2, ..., y_{12}\} \) can be computed by sigmoid activation function for the output \(S \), and the ground-truth binary AU label is \(\mathcal{Y}' = \{y_1', y_2', ..., y_{12}'\} \in \mathbb{B}^{12}, B = \{0, 1\} \), where 1 denotes the corresponding action unit is activated and vice versa.

We adopt two loss functions for the AU detection: multilabel circle loss \([48, 49]\) and binary cross entropy loss. The former one is proposed for capturing the correlation be-
tween AUs, trying to simultaneously enforce all the activated AU’s output value to be bigger than 0 and the non-activated AU’s output value smaller than 0:

\[
\mathcal{L}_{\text{Circle}} = \log(1 + \sum_{i \in O_0} e^{s_i}) + \log(1 + \sum_{j \in O_1} e^{-s_j}),
\]

\[
O_0 = \{ i \mid y_i = 0 \},
\]

\[
O_1 = \{ j \mid y_j = 1 \}.
\]

The binary cross entropy loss is used to optimize single AU classification. For each AU, we calculate the cross entropy between the prediction result \(\hat{y}_j\) and the ground-truth \(y_j\), which can be formulated as:

\[
\mathcal{L}_{\text{CrossEntropy}} = -\frac{1}{12} \sum_{j=1}^{12} [y_j \log \hat{y}_j + (1 - y_j) \log(1 - \hat{y}_j)].
\]

The total loss of AU detection is given as:

\[
\mathcal{L}_{\text{AU}} = \mathcal{L}_{\text{Circle}} + \mathcal{L}_{\text{CrossEntropy}}.
\]

EXPR Recognition. Except for predicting the AU label, the intermediate AU feature is also translated to assist the expression recognition. We propose an AU→EXPR module to model the latent relationship between AU and EXPR. The outputs from AU→EXPR module and EXPR feature extractor are jointly sent into the EXPR predictor for expression classification. After a softmax activation function, the output vector is denoted as \(\hat{Z} = \{\hat{z}_1, \hat{z}_2, ..., \hat{z}_7\} \in \mathbb{R}^7\). The expression ground-truth \(Z = \{z_1, z_2, ..., z_7\} \in \mathbb{R}^7\) is an one-hot vector generated from the annotated expression class. To alleviate the overfitting issue, we use soft cross entropy loss for optimization as follows:

\[
\mathcal{L}_{\text{EXPR}} = \lambda \log(\hat{z}_c) + \sum_{i=1}^{7} (1 - \lambda) \log(\hat{z}_i).
\]

where \(c\) indicates the \(c\)-th expression class, i.e., \(z_c = 1\), and \(\lambda\) is the label smoothing factor and empirically set to 0.9.

VA Regression. Finally, in order to predict the valence and arousal values, we make use of the intermediate features translated from the AU and EXPR task. The \{AU, EXPR\}→VA module takes the joint features as input and generates another 64-dimensional feature to aid the VA regression. Specifically, the concatenated 128-dimensional feature vector is sent into VA predictor consisting of several fully-connected layers with tanh activation for generating a two-dimensional vector. In the VA track, we use the Concordance Correlation Coefficient (CCC) loss for optimization. CCC is used to evaluate the correlation between all ground-truth labels and predictions. For a pair of ground-truth/regression vector \(\{X, \hat{X}\}\), the CCC function is formulated as:

\[
\text{CCC}(X, \hat{X}) = \frac{2\rho_{X, \hat{X}} \delta_X \delta_{\hat{X}}}{\delta_X^2 + \delta_{\hat{X}}^2 + (\mu_X - \mu_{\hat{X}})^2},
\]

where \(\delta_X, \delta_{\hat{X}}\) indicate the standard deviations of \(X\) and \(\hat{X}\), respectively, \(\mu_X\) and \(\mu_{\hat{X}}\) are the corresponding means and \(\rho_{X, \hat{X}}\) is the correlation coefficient.

We define the batch output of VA predictions as \(\hat{Y}, \hat{A}\) and the annotated labels \(Y, A\). We compute two CCC values, \(\text{CCC}(Y, \hat{Y})\) for valence and \(\text{CCC}(A, \hat{A})\) for arousal. In general, the CCC loss for VA regression is computed as following:

\[
\mathcal{L}_{\text{VA}} = 2 - |\text{CCC}(Y, \hat{Y}) + \text{CCC}(A, \hat{A})|.
\]

In sum, the total loss of our streaming network can be formulated as:

\[
\mathcal{L}_{\text{total}} = \alpha_{\text{AU}} \cdot \mathcal{L}_{\text{AU}} + \alpha_{\text{EXPR}} \cdot \mathcal{L}_{\text{EXPR}} + \alpha_{\text{VA}} \cdot \mathcal{L}_{\text{VA}},
\]

where \(\alpha_{\text{AU}}, \alpha_{\text{EXPR}}\) and \(\alpha_{\text{VA}}\) are boolean valueables indicating the existences of ground-truth labels on each track.

To conclude, our design of the streaming model comes from the idea that there exists underlying relationships between the AU, EXPR and VA representations. It is obeyed to the phenomenon that human can infer the expression categories from the AUs and approximate the VA values in 2D space from the expressions. Therefore, we propose the AU→EXPR module and \{AU, EXPR\}→VA module to mimic the above heuristics, and so that to help infer more hidden information from limited training data.

3.4. Data Augmentation

Due to the unbalanced distribution of emotional recognition datasets, we further propose two strategies to augment the training data, including adding external datasets and generating pseudo labels.

External Dataset. In addition to the original training set of Aff-Wild2 [3], our model is further trained on the BP4D [5], DFEW [14], and AffectNet [15]. BP4D is a large-scale in-the-lab 3D video database of spontaneous facial expressions with totally 328 videos from 41 subjects. The videos are annotated with 12 AUs (AU1, AU2, AU4, AU6, AU7, AU10, AU12, AU14, AU15, AU17, AU23, AU24), head pose and facial landmarks. At the same time, we add the data from DFEW and AffectNet dataset for facial expression recognition. DFEW is a large-scale facial expression database with 16,372 video clips from movies and annotations of 7 basic expressions. AffectNet contains 450,000 in-the-wild images categorized into 8 basic expressions (one more category for contempt than the typical seven basic expressions) and also labelled with VA.

In the expression recognition task, we only use part of the DFEW dataset due to the bias between different
datasets. Specifically, we only utilize the images that achieve a high confidence on the original Aff-Wild2-trained model with a threshold of 0.8. In the AU detection task, the AU labels in the external datasets are not exactly the same as the Aff-Wild2’s. In particular, BP4D dataset lacks the annotations for AU25 and AU26 and adds the annotations for AU14 and AU17. So we only keep the external data with AUs that are consistent with the Aff-Wild2 and omit the different ones. In the VA regression task, we adopt the images with valence and arousal annotations between -1.0 and -0.25 from the AffectNet dataset for training.

Pseudo Label. We also propose to generate reliable pseudo labels on the unannotated data to improve the network generalization ability. We introduce two strategies for pseudo label generation: based on rules and based on teacher-student scheme.

We first exploit the underlying relationship between AU and EXPR in a manual manner. Particularly, it is observed that some AUs mostly indicate the same expression classes. For example, the AU vector \((1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1) \) in the Aff-Wild2 training set mostly occurs when conveying surprise emotion. With such knowledge, we can quickly infer the missing expression labels from explicit AU annotations. We conclude these rules from the training set and make them to generate pseudo expression labels for fine-tuning our model.

Second, we also employ the teacher-student training strategy for unsupervised domain adaptation. For the facial images without emotional annotations, we filter them with a high confidence value by model prediction results and add them for training. In this way, we produce around 500k pseudo labels for fine-tuning and the experimental results indicate obvious improvement in terms of evaluation scores.

4. Experiment

In this section, we first introduce our experimental settings. Then, we give some experimental comparison results on the validation and test set of Aff-Wild2 [3]. We also conduct several ablation experiments to evaluate the effectiveness of each module in our framework.

4.1. Experimental Setting

We processed all videos in the Aff-Wild2 [3], BP4D [5], and DF EW [14] datasets into frames by OpenCV and employ the OpenFace [50] detector to crop all facial images into 224 × 224 scale. Our training process is implemented based on PyTorch. The training procedure costs around 20 hours on an NVIDIA RTX 3090 graphics card, with a learning rate of 0.002 and batch size 80. We use a stochastic gradient (SGD) optimizer with a cosine annealing warm restart learning rate scheduler.

4.2. Metric

For AU and EXPR tasks, we calculate the F1-Score (\(F1 \)) and total accuracy (\(TAcc \)) to evaluate the prediction results. For the VA regression results, we compute the Concordance Correlation Coefficient (CCC) for valence and arousal respectively (i.e., \(CCC_V \) and \(CCC_A \)).

In participating the ABAW2 Competition [51], we also report the final scores per each track. The AU and EXPR scores are defined as the weighted sum of \(F1 \) and \(TAcc \):

\[
S_{AU} = 0.5 \times F1 + 0.5 \times TAcc; \quad S_{EXPR} = 0.67 \times F1 + 0.33 \times TAcc.
\]

While the VA score is defined as the average of \(CCC_V \) and \(CCC_A \):

\[
S_{VA} = (CCC_V + CCC_A)/2.
\]

4.3. Comparison

In practice, we first conduct 5-fold cross-validation experiments on the Aff-Wild2 datasets (See Sec. 4.3.1). The quantitative results indicate that the splitting of the training/validation set makes a notable impact on the model precision. Therefore we propose an ensemble strategy to fuse the prediction results generated by models that are trained on different foldings. In Sec. 4.3.2, we compare our method with the baseline [12] as well as the other competitive approaches.

4.3.1 Cross validation and ensembling.

The original Aff-Wild2 dataset [3] is split into training/validation/test set based on the video subjects. We argue
that the division of training and validation set is sensitive to the model precision. To verify this point, we conduct 5-fold random cross-validation experiments and report the statistics of prediction results on each fold including the original split dataset. In Tab. 1, it can be observed that our model performances are varying obviously among the different validation sets, especially on the VA task. The \(CCC_V\) metric ranges from 0.488 to 0.642 while \(CCC_A\) could be 0.502 to 0.624.

The unstable results indicate that the model performances are highly dependent on the distribution consistency between the training and validation set. To this end, we propose an ensembling strategy to improve the robustness of our prediction results. Specifically, we make the results generated by six models (five are trained on 5-fold split datasets and the other trained on the original dataset) to vote for the final predictions.

4.3.2 Test result.

Here, we report the official released comparison results on the test set of Aff-Wild2 [3]. As shown in Tab. 2, our method wins the first prizes in the AU and EXPR tracks, and the second place in the VA track. In particular, we achieve a leading EXPR result with score of 0.777, compared to the second one 0.712 from CPIC-DIR2021 [24].

One of the most technical differences between our method and the others is the backbone/prior model. Specifically, the other works [25, 27] simply apply Resnet [26] or face recognition model [24] as backbones while our method adopts the expression priors from a pre-trained expression embedding model which can encode fine-grained and identity-invariant expression similarity information. Besides, CPIC-DIR2021 [24] and NISL-2021 take the time-sequential information into account. Maybe Next Time [25] and Morphoboid [27] implicitly exploit the correlation between different affective representations by multi-task training. Instead, we propose the streaming model to extract the interrelationships following an explicit order \(AU \rightarrow EXPR \rightarrow VA\).

<table>
<thead>
<tr>
<th>Method</th>
<th>(F1)</th>
<th>(TAcc)</th>
<th>(SM_A)</th>
<th>(F1)</th>
<th>(TAcc)</th>
<th>(S_{EXPR})</th>
<th>(CCC_V)</th>
<th>(CCC_A)</th>
<th>(SV_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline [12]</td>
<td>0.367</td>
<td>0.193</td>
<td>0.280</td>
<td>0.260</td>
<td>0.460</td>
<td>0.326</td>
<td>0.200</td>
<td>0.190</td>
<td>0.195</td>
</tr>
<tr>
<td>Morphoboid [27]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.351</td>
<td>0.668</td>
<td>0.455</td>
<td>0.505</td>
<td>0.474</td>
<td>0.489</td>
</tr>
<tr>
<td>Maybe Next Time[25]</td>
<td>0.461</td>
<td>0.876</td>
<td>0.669</td>
<td>0.604</td>
<td>0.728</td>
<td>0.645</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CPIC-DIR2021[24]</td>
<td>0.489</td>
<td>\textbf{0.891}</td>
<td>0.690</td>
<td>0.683</td>
<td>0.770</td>
<td>0.712</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NISL-2021</td>
<td>0.450</td>
<td>0.846</td>
<td>0.652</td>
<td>0.431</td>
<td>0.653</td>
<td>0.504</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ours</td>
<td>\textbf{0.505}</td>
<td>0.888</td>
<td>\textbf{0.697}</td>
<td>\textbf{0.763}</td>
<td>0.806</td>
<td>\textbf{0.777}</td>
<td>0.485</td>
<td>0.495</td>
<td>0.490</td>
</tr>
</tbody>
</table>

Table 2: Comparison results between our method and the other competitive works on the ABAW2 test set. The best is indicated in bold.

<table>
<thead>
<tr>
<th>Method</th>
<th>(SM_A)</th>
<th>(S_{EXPR})</th>
<th>(SV_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline [12]</td>
<td>0.310</td>
<td>0.366</td>
<td>0.220</td>
</tr>
<tr>
<td>Ours w/o prior model</td>
<td>0.669</td>
<td>0.621</td>
<td>0.473</td>
</tr>
<tr>
<td>Ours w/o streaming model</td>
<td>0.677</td>
<td>0.664</td>
<td>0.447</td>
</tr>
<tr>
<td>Ours w/o data augmentation</td>
<td>0.742</td>
<td>0.790</td>
<td>0.495</td>
</tr>
<tr>
<td>Ours</td>
<td>\textbf{0.756}</td>
<td>\textbf{0.793}</td>
<td>\textbf{0.540}</td>
</tr>
</tbody>
</table>

Table 3: Ablation study results of the prior model, streaming structure and data augmentation module. All scores are computed based on the official validation set. The best is indicated in bold.

4.4. Evaluation

In order to evaluate the effectiveness of our proposed algorithm design, i.e., prior model, streaming network, and data augmentation, we conduct ablation studies by comparing the models trained without the corresponding components. The quantitative results shown in Tab. 3 and Fig. 3 indicate the benefits of the algorithm modules in terms of improving the affective recognition performances on each track.

Prior Model. To verify the effectiveness of the prior model, we conduct an ablation study by replacing the DLN [13] prior model with the ResNet50 [26] backbone. From the Tab. 3, it can be observed that DLN makes distinct improvements compared to the ResNet50 model. To analyze the concerned attributes of the prior model, we utilize the Grad-CAM [52] tool to visualize the feature-sensitive areas within the last layer of the prior model. Fig. 4 illustrates the several samples from Aff-Wild2 [3] and proves that the DLN model is concentrating on the facial areas mostly conveying human emotions, such as foreheads, eyebrows, cheeks, lips, and jaws, but ignoring the less interesting areas like face boundaries and backgrounds. This phenomenon demonstrates that our prior model is capable enough of capturing the identity-invariant expression features and therefore motivating the down-streaming tasks.

Streaming Model. To prove the effectiveness of the streaming model design, we compare our method with and without the \(AU \rightarrow EXPR\) and \{\(AU, EXPR\)\} \(\rightarrow VA\) module. As shown in Tab. 3, when applying the streaming model, the
AU1, AU23, and AU24 in AU track and Disgust in EXPR track) improve obviously with the augmented training data. This proves that the data augmentation operation can serve as a useful strategy to promote the model performance on minority classes.

5. Limitation and Discussion

Despite we have proved the effectiveness of the streaming model for multi-task affective analysis, however, the AU→EXPR→VA order is not thoroughly evaluated yet. The current hierarchical design is simply based on our heuristics on a perception level of the three concepts. In the future, it would be meaningful to exploit and demonstrate the underlying relationships across the three representations. Besides, we did not explore our model performance on the other affective recognition dataset, due to a limitation of time and resources. In the future, we would extend the framework by considering other improvements such as aural and temporal information.

6. Conclusion

In this paper, we introduce our deep learning based framework for multi-task affective recognition in the ABAW2 Competition. We propose a streaming network by exploiting the hierarchical relationships between different emotion representations. Besides, we employ an expression prior model to help extract the identity-invariant expression features, alleviating the burden of downstream tasks. Finally, we finetune our model on the external datasets and reliable pseudo labels. In participating in the competition, we won the first prizes in the AU track and EXPR track and achieve second place in the VA track. The competition results indicate the superiority of our framework. We also conduct the ablation study to prove that each component of our method is effective to the affective recognition tasks.
References

