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Abstract

The algorithms designed to solve the Simultaneous Lo-
calization And Mapping (SLAM) problem have to be often
executed on embedded platforms in order to become part of
complex robotics systems. Despite the continuous growth
of their computational capabilities, the embedded devices
still have considerable limitations, especially in terms of
memory. This paper presents a modified version of the
well known ORB-SLAM algorithm which improves its per-
formance thanks to the use of Hardware-generated Optical
Flow (HW-OF). The ORB-SLAM has been modified in or-
der to run into the Stereo-cam embedded system by STMi-
croelectronics. The Stereo-cam includes the VD56G3 sen-
sor, able to provide Near Infrared (NIR) images and OF
data computed by a hardware accelerator. The experiments
showed an improvement of the ORB-SLAM performances in
terms of memory consumption and frame rate.

1. Introduction

Simultaneous Localization And Mapping (SLAM) is the
set of algorithms aiming to construct and update a map of
an unknown environment. At the same time, they have to
keep track of the system positioning in the map. Nowa-
days cameras are low cost, light-weight and low power con-
sumption sensors. Such features make them a good choice
for SLAM [6] solutions for real-world applications, in par-
ticular for indoor navigation in unknown environment, the
typical vacuum cleaner scenario. SLAM algorithms can be
applied also in autonomous vehicles [1], smartphone-based
and head-mounted devices, Augmented, Virtual and Mixed
Reality [25], [28], [7] and commercial drones [9]. Each
of these applications requires different levels of precision,
accuracy, efficiency, success rate. Most of them cannot be
addressed just using visual information, so several kind of
additional sensors are used: laser scanners, Inertial Mea-
surement Unit (IMU) [21], GPS receivers, etc. Adding in-
formation from different sources takes the problem com-

plexity to a higher level because this information must be
synchronized and because the algorithm must be able to use
them efficiently. Although some sensors offer good perfor-
mances at low prices, a multi-modal system is still more
expensive than a monocular one, also in terms of power
consumption. Since SLAM solutions are usually complex
and require high computational and memory resources, im-
plementation on embedded devices remains an interesting
challenge. This paper presents a specific case of study: the
implementation of a visual slam algorithm exploiting NIR
and HW-OF generated by an STMicroelectronics’ device on
a low power Microprocessor Unit (MPU).
The rest of the paper is organized as follows. Section 2
describes the main blocks of a typical SLAM algorithm;
Section 3 presents an overview of existing methods and the
related classification; Section 4 introduces the ORB-SLAM
algorithm and the proposed modified version. The Section 5
discusses the experimental results. Final remarks in Section
6 end the paper.

2. SLAM algorithm basic design
A SLAM system is a pipeline of algorithms devoted to

settle specific sub-problems in order to concur on solving
the global SLAM problem. For sake of simplicity, a typi-
cal SLAM system can be represented as a pipe of four main
blocks (see Figure 1): Input search, Pose tracking, Mapping
and Loop Closure, discussed in details in the following sub-
sections.

2.1. Input Search

The Input Search step aims to extract suitable informa-
tion from sensors’measures. Some approaches use the pixel
intensity values in order to match different frames and ex-
tract the motion information. They are called ”direct” meth-
ods. Other techniques extract salient features from the im-
ages, i.e. corners or edges, and then they look for matching
among such features. The SLAM approaches based on fea-
tures extraction are known as ”indirect” or ”feature-based”
methods. They require the use of robust feature detectors
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Figure 1. SLAM system basic blocks.

and descriptors. The literature offers a wide choice of de-
scriptors: Harris [4], SURF [12] , FAST [10], BRIEF [19],
SIFT [16], ORB [11], each of which presents advantages
and disadvantages in terms of performances and reliability.
Ideally a feature descriptor should be invariant to transla-
tion, to rotation, to scale , to the point of view and brightness
variations.

2.2. Pose Tracking

The Pose Tracking step provides an estimate of the cur-
rent device position, updating it in dependence on the new
observations. This block allows to obtain the device trajec-
tory estimation. It can be also referred as odometry and,
in particular, Visual Odometry (VO) [21], when this infor-
mation is extracted from the image. Sometimes SLAM and
Visual Odometry are treated as synonyms in the literature,
because they solve similar problems, but VO is a building
block of SLAM because it doesn’t provide global mapping.
Depending on whether the features used to perform frames
matching are 2D or 3D, there are several methods to im-
plement the VO. Pure VO directly matches the 2D features
extracted from consecutive frames. Another option is the
2D-3D method. In this case the pose is estimated from a
set of 3D points, previously mapped and projected into the
current frame. The less common method is the 3D-3D, that
is possible only in the case of stereo cameras: in this case
the localization of the newly detected 3D features can be
performed directly.

2.3. Mapping

The mapping is the action of correctly localize a new de-
tected feature in the environment mapped by the system so
far. The mapping block creates and updates the map of the
environment where the device is moving in. Such map can
be a 2D or 3D map and it can be dense or sparse, depend-
ing on SLAM implementation, i.e. using direct or indirect
methods.

2.4. Loop Closure

SLAM system must be able to recognize when the device
is in an area of the environment already mapped. The Loop
Closure is a two-phases process: it starts with the Loop De-
tection step and then it performs the Loop Closure itself.
Even if the sensors provides accurate information and the
odometry and mapping algorithm are reliable, noise and ap-
proximation introduce errors into the pose and map estima-
tion processes, and such errors are propagated long the time.
In these cases the Loop Closure block exploits the new in-
formation to correct the errors accumulated in both the map
and the camera position estimations. This implies a correc-
tion strategy. This is one of the most important step in the
whole SLAM process.
There are two large classes of approaches performing such
step: Bundle Adjustment (BA) [3] methods and filter meth-
ods. The BA re-evaluates all the camera poses and feature
poses in the map from scratch at every time step as a max-
imum likelihood estimate, whilst the filter methods repre-
sent the estimate of the device and feature poses as a proba-
bility density function, correcting such estimates incremen-
tally by taking into account the new observations. The Ex-
tended Karman Filters (EKF), which gives a Bayesian so-
lution to the state estimate update depending on the new
observations, is the typical solution used for this step. An-
other approach consists on modelling the probabilities for
the state estimate by multivariate Gaussian Particle Filters,
which do not assume the shape of the probability density
function. Even if apparently the filter methods reduce the
computational costs reusing previous estimations, the BA
can be efficiently implemented looking for the optimal so-
lution on a subset of past camera poses and features. More
precisely, keyframes which present meaningful features are
chosen at regular intervals and only these will be used to
correct the map reducing the computational costs. Com-
putational complexity of real-time BA can be reduced also
using other techniques, such as Pose Graph Optimisation
[17]. Note that the loop closure is the element that distin-
guishes SLAM from Visual Odometry, along with the map-
ping phase.

3. SLAM algorithms classification
SLAM algorithms can be classified in several ways. The

most common choice is the classification performed accord-
ingly with their input and output domains. The difference
between direct and indirect methods is related to the input
domain, while the type of output determines whether the
map is dense (the whole frame is processed) or sparse (just
a cloud of sparse features is processed). In between there
are the semi-sparse methods, defined as the dense meth-
ods where only a particular zone of interest of the frame
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Figure 2. ORB-SLAM basic scheme

is mapped. So, four possible combination of algorithms’
categories can be identified: Direct/Dense, Direct/Sparse,
Indirect/Dense, Indirect/Sparse.
The direct methods usually are able to provide a dense map,
whilst the indirect approaches usually outputs sparse maps.
Direct/Sparse and Indirect/Dense methods are rare. The
former use the photometric error (Direct Sparse Odome-
try [14] is the most popular example of this kind of tech-
niques), the latter consider the geometric error as a devia-
tion from the optical flow relating to the same frame [24].
The choice between direct and indirect methods depends
on the application key requirements, e.g., the level of en-
vironment understanding required, the available computa-
tional resources, the environment features and the target
accuracy. The feature-based approaches are robust to im-
age noise. Their main drawback is that, once the features
are extracted, the global image information is lost, so these
methods are less effective in environments with too many
or too few salient features, or where such features can be
made less recognizable by external factor (e.g., atmospheric
phenomena). Moreover, the feature extraction step requires
additional computational efforts. On the contrary, the direct
methods do not present such overload, they maintain the
global information, but they suffer in case of light changes
and they are sensitive to large motion, too. In applications
exploiting basic hardware, such as webcam or smartphone,
an indirect method is likely the best choice due to its robust-
ness. When a more sophisticated device is available, e.g.
global shutter cameras, a direct approach may be preferred.
Note also that in same case a 3D reconstruction of the en-
vironment is a must (e.g. in Augmented or Virtual Reality
applications), but it often requires an heavy parallelization
on GPU.
A lot of SLAM direct and indirect algorithms have been
developed in the latest years. The set of most popular
feature-based methods includes the monocular EKF-SLAM
MonoSLAM [2], the monocular FastSLAM [20], the Par-
allel Tracking And Mapping (PTAM) [15] and the ORB-
SLAM [22], [23], that will be discussed in detail in the next

section. The first dense monocular SLAM direct method
is the Dense Tracking And Mapping (DTAM) [26]. A
direct approach able to provide a semi-dense map is the
Large Scale Semi Direct SLAM (LSD-SLAM) [13], whilst
ROVIO [18] and Direct Sparse Odometry (DSO) [14] are
examples of direct methods providing sparse maps. Note
that several approaches based on deep-learning have been
proposed (see [27] for an accurate overview).

4. ORB-SLAM
The ORB-SLAM [22] is one of the most popular feature-

based solution for the SLAM problem because it presents
several strengths. First of all, the source C++ code includes
several versions of the algorithm [23]: monocular or stereo
cameras, depth sensor, etc., so it is suitable for many appli-
cations. Moreover, one more version, able to exploit IMU,
has been recently introduced [5]. The ORB-SLAM imple-
ments the main blocks of the system in an efficient manner,
so it can be executed just exploiting the CPU. The algorithm
itself is quite flexible: the performances maintain the same
level in both indoor and outdoor environments. Moreover,
the ORB-SLAM is not only a complete SLAM system, i.e.
it includes a Loop Closure block, but it also presents a re-
localization module able to resume the tracking when the
algorithm doesn’t find a sufficient number of keypoints for
some reason. In order to extract the salient features from
the current frame, it uses the ORB detector. ORB [11] is
a fusion of oriented FAST [10] keypoints detector and ro-
tated BRIEF [19] descriptors. It is a free alternative to SIFT
[16] and SURF [12] and it overcomes them in computation
cost and performance. The basic scheme of the monocular
ORB-SLAM is shown in the Figure 2. The pipeline consists
of three main blocks: the Tracking, the Local Mapping and
the Loop Closure. The tracking starts with the ORB features
extraction and it includes a self-initialization sub-system
able to provide the first pose guess and to fix the scale.
To perform the initialization the system requires a regular
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Figure 3. Modified ORB-SLAM basic scheme: the OF motion vectors replace the FAST keypoints.

motion in an environment including a sufficient number of
detectable corners and edges in order to matches keypoints
of consecutive frames and to perform triangulation. Once
that the initial map is created and the first pose estimation
is obtained, the tracking starts. When a new frame is ac-
quired, the ORB features are extracted and compared to the
existing map in order to update the map itself and the pose.
Moreover, keyframes are added when the system recognizes
a meaningful change in the scene. This step is the Local
Mapping block task. Note also that, thanks to the keyframe-
based organization and a Bag of Words (BoW) [8] vocabu-
lary updated on the fly, the relocalization block works effi-
ciently. The Loop Closure is the last main block making the
system able to recognize when the device is moving into an
already visited zone. In this case the new observations are
also exploited to correct the pose and map estimation.

4.1. Modified ORB-SLAM

The purpose of the activity presented in this paper is
the exploitation of STMicroelectronics’ VD56G3 sensor in
3D-SLAM exploiting the built-in Optical Flow generation.
To achieve this goal, the ORB-SLAM algorithm has been
slightly modified to make it able to process VD56G3 data
and to exploit it during the feature extraction step (see Fig-
ure 3). The following section describes more in details
the VD56G3 and the hardware system used to perform the
tests. The most important information to know is that the
VD56G3 is able to provide NearInfraRed (NIR) images
and related Optical Flow (OF), computed very efficiently
thanks to a hardware accelerator. The NIR data are repre-
sented as grayscale images, so no modification was needed
to correctly load and process them. While the classic ORB-
SLAM uses the ORB to extract the images features, our
version uses the coordinates of the motion vectors as key-
points. This allows to remove research of the salient points
step in the whole frame, even if the computation of the re-

Figure 4. The Stereo-Cam with two VD56G3 mounted on the
DragonBoard through the 96connector used for the experiments.

lated descriptors remains unchanged, being necessary for
the following matching among the currently extracted fea-
tures and those already present in the map. A further step to
improve the efficiency of the algorithm could be not to use
the descriptors as well, by modifying the matching process
properly. This is a not a trivial change because it impacts
the whole mapping module and it will be the objective of
future investigation.

5. Experimental results

The data used for the tests are two KITTI [1] sequences
(KITTI-00 and KITTI-04) and an VD56G3 indoor sequence
acquired moving the device by hand. The KITTI-00 is the
most complex sequences, it includes more than 2000 frames
and several rotations. The KITTI-04 sequence presents a
more regular trajectory and it consists of 270 frames. The
VD56G3 sequence includes straight, slow motion and rota-
tions+translation motion and it includes 800 frames On the
contrary, the KITTI data are acquired at high speed in urban
environment using a car equipped with several sensors.
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Sequence ORB-SLAM std ORB-SLAM OF-based Gap
Frame rate (fps) Memory (MiB) Frame rate (fps) Memory (MiB) Frame Rate (%) Memory (%)

KITTI 00 3.86 590 3.97 445 +2.85 -24.58
KITTI 04 2.92 610 4.30 560 + 47.26 -8.20
VD56G3 2.46 745 4.38 485 +78.05 -34.90

Table 1. Comparative analysis of ORB-SLAM standard and the proposed, OF-based version.

5.1. Experiments environment

The experiments have been done using a prototype board
by STMicroelectronics called Stereo-Cam. It doesn’t con-
tains a microcontroller, but it can be connected to any
96board by a 96connector (see Figure 4). It also contains
two Near-InfraRed (NIR) imaging VD56G3 sensor with
hardware Optical Flow accelerator. Note that just one of
the two VD56G3 sensor is used. The VD56G3 is an Ad-
vanced 1.5 Mpixel, backside illuminated Global Shutter,
ultra compact sensor, optimized for near infrared scenes.
The sensor captures up to 98 frames per second in a 1124
x 1364 resolution format. Moreover the prototype board
has two IMU (3D accelerometer, 3D gyroscope) and an a
VL53L5CX Time of Flight laser-ranging sensor. Such ad-
ditional modules are not used to improve the SLAM. The
VD56G3 add-on has been connected to a Dragonboard 410
C equipped with a Qualcomm® Snapdragon (four cores
@1.4GHz). Since the purpose of the experiments is to eval-
uate the algorithm efficiency improved achieved replacing
the FAST keypoints detector with the OF motion vectors,
the latter have been calculated by software off-line in the
case of KITTI sequences. The comparison between the
original ORB-SLAM and our OF-based version have been
performed measuring the heap memory consumption (in
MiB) and the frame rate (frames per second) achieved by
the two approaches on the test sequences.

It’s important to point out that the ORB-SLAM2 is a
desktop-designed algorithm, so it requires high power cal-
culation. It should also be noted that no specific optimiza-
tions were made to the original algorithm in order to reduce
such requirements. The Table 1 summarizes the results. The
experiments on the KITTI-00 sequence shows that the re-
sults in terms of both frame rates are similar with the two
approaches (3.86 versus 3.97), whilst the OF-based method
performs better in terms of memory occupation: the peak in
the case of the original algorithm is 590 MiB, the modified
approach registered a maximum of 445 MiB. Exploiting the
OF allows to achieve better performances also in terms of
frame rate in the other sequences: more than 4 frame per
second, versus less than 3 fps of the standard ORB-SLAM.
The improvement has been achieved because the OF algo-
rithm performs better on this kind of scenes and it provides
a considerable amount of motion vectors suitable for the
map construction in a faster manner compared to the ORB-

based approach. The improvement is more evident looking
at the last two columns of the Table 1, that represents the
percentage gap. Considering the KITTI data, it is important
to point out that they are images acquired at high speed, so
the sequences includes pure rotation, a kind of motion that
provides sudden scene changes, faster than new map points
triangulation, so it often causes tracking lost too. Ideal cam-
era motion to new areas consists of slow rotation and simul-
taneous translation. This helps to add new map points in the
current area and, in turn, it helps tracking in the new area.

6. Conclusion and future works
Execution of SLAM algorithm originally designed for

desktop PC always requires an effort to adapt them to dif-
ferent platform. This paper presented a modified version of
the ORB-SLAM able to process near infrared images and
Optical Flow data and a comparative analysis between such
version and the original algorithm. Experiments performed
using the Stereo-CAM equipped with the VD56G3 sensor
by STMicroelectronics, having an ad-hoc optical flow HW
accelerator, showed a performances improvement in terms
of both frame rate and memory occupation. The next steps
of this activity focus on the possibility of improvement of
the algorithm efficiency and accuracy. In terms of effi-
ciency, there are several opportunities to improve the perfor-
mances. First of all, thanks to its features, the Stereo-cam
can be connected to more recent 96 board taking advance by
a richer set of resources, without any software modification.
On the other side, the Stereo-cam’s equipment includes two
VD56G3 sensors, so the possibility of acquire stereo im-
ages, IMU and ToF sensors, that provides very useful infor-
mation to be exploited in a SLAM system. The major chal-
lenge here is to maintain a temporal synchronization among
different recorded data streams.
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[28] D. Cremers T. Schöps, J. Engel. Semi-dense visual odome-
try for ar on a smartphone. Proceedings of the IEEE Inter-
national Symposium on Mixed and Augmented Reality (IS-
MAR), page 145–150, 2014.

1804


