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Abstract

The Blind or Visually Impaired (BVI) individuals use
haptics much more frequently than the healthy-sighted in
their everyday lives to locate objects and acquire object de-
tails. This consequently puts them at higher risk of contract-
ing the virus through close contact during a pandemic cri-
sis (e.g. COVID-19). Traditional canes only give the BVIs
limited perceptive range. Our project develops a wearable
solution named Virtual Touch to augment the BVI’s per-
ceptive power so they can perceive objects near and far
in their surrounding environment in a touch-free manner
and consequently carry out activities of daily living dur-
ing pandemics more intuitively, safely, and independently.
The Virtual Touch feature contains a camera with a novel
point-based neural network TouchNet tailored for real-time
blind-centered object detection, and a headphone telling the
BVI the semantic labels. Through finger pointing, the BVI
end user indicates where he or she is paying attention to rel-
ative to their egocentric coordinate system, based on which
we build attention-driven spatial intelligence.

1. Introduction
1.1. Background

The World Health Organization’s data show that there
are 39 million blind individuals and 246 million individuals
with low vision worldwide [49]. Prior to the arrival of
the pandemic COVID-19, sight loss and low vision pose
significant challenges for the Blind or Visually Impaired
(BVI) individuals to carry out activities of daily living
according to reports [45, 34, 36, 29, 62]. An April 2020
survey [12] conducted by American Foundation for the
Blind with over 1,921 participants reveals that sudden
pandemic crises like the ongoing COVID-19 profoundly
magnified those barriers and obstacles in the BVIs’
daily lives (Figure 1 left). BVIs have limited perceptive
range so they use haptics much more frequently than the
healthy-sighted in their everyday lives to locate objects

and acquire object details. In non-pandemic times, BVIs
compensated their visual deficiencies with alternatives
to vision, such as working with a guide person to help
with grocery shopping or exploring a new environment by
touch. However, these compensatory methods have become
risk-inducing or mentally stressing due to health and safety
guidelines during pandemics, such as avoiding contact with
object surfaces or maintaining social distance [2]. The
shortened perceptive range of the BVI and the consequent
elevated pandemic risks motivate us to propose our project.
We aim to develop a wearable solution to augment the
BVI’s perceptive power so that they can perceive objects
in their surrounding environment in a touch-free manner
and carry out activities of daily living during pandemics
more intuitively, safely, and independently. We name the
proposed wearable solution Virtual Touch (Figure 1 right).

1.2. Needs of the BVI.

A variety of surveys [12, 60, 17, 6] have been conducted
to offer insight into the specific needs of the BVI commu-
nity during pandemics and potential ways to address them.
Based on the outcomes of the surveys, we identified primary
needs of the visually impaired during pandemic crises: (1)
the BVIs need to safely explore their surrounding objects in
a touch-free manner so to reduce contraction risks through
close contact [20, 21, 60, 17, 15, 4, 7, 51]; (2) they should
also be given more long range perspective power that the
traditional canes do not offer and human assistants cannot
offer during pandemic times [1, 27, 64, 14, 12]. BVIs
should be able to actively and selectively explore objects
present in the surrounding environment (e.g. quickly locate
the door knob to open the door, identify and push the
desired elevator button, look for the cashier for checkout).
This requires more interaction than assistive technologies
of First Person Vision [37, 28] based on head motion and
gaze direction. In addition to support for safe and active
exploration, the BVIs highly appreciate wearable solutions
of compact size (e.g. a smartphone) that meet their needs
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Figure 1. Exploration challenges for the BVI exist in various scenarios during the pandemics (left). The proposed Virtual Touch system
replaces physical touch for the BVIs and assists them with safe environment exploration (right). [The images from Google search are
copyright to their respective owners]

of mobility and functional independence while performing
their activities of daily living [32, 48, 13, 53, 16].

1.3. Previous Assistive Technologies

Here we review the existing commercial assistive
solutions for the BVI. The white cane [65] is a traditionally
widely used [19, 68] and affordable tool for exploration
of immediate surroundings, but its function is limited
by its reach as a direct extension of the physical touch
[45, 24, 57, 43, 69, 11, 56, 68]. Most hardware-based
solutions face significant drawbacks that have led to an
overall low adoption rate [25, 58, 44], including: (1)
High cost. Popular commercial sensory substitution
devices generally fall into a price range of a few thousand
US dollars due to the high cost of dedicated hardware
[5, 26, 3, 46, 31, 66]. (2) Cumbersomeness. As shown
Figure 2, hardware-based assistive devices often lead to un-
comfortable user experience due to the additional hardware

components (i.e. sensors, battery). (3) Inability to address
pandemic-specific needs. Most assistive technologies
[58, 35, 40, 30, 39, 10, 33, 18, 9] are designed in a way that
does not provide intuitive assistance under the context of
viral pandemics. In contrast, software-based solutions that
run a smartphone are more affordable and accessible for
BVIs, with Microsoft Seeing AI and BlindSquare [47, 8]
being two popular sensory substitution and navigation apps.
Unfortunately, the assitive APPs technologies are unable
to fully address the design requirements for risk reduction
during a pandemic due to (1) lack of the functional design
of an active mode that enables interactive communication
between the user and surrounding environment, (2) lack of
the functional design for the special pandemic needs (i.e.
risk reduction), and (3) lack of on-board visual processing
and dependency on online cloud visual computing (i.e.
Microsoft Seeing AI), which could lead to functional
failures.

Figure 2. Existing assistive technologies for the BVI can be simple but functionally limited (middle) or well-equipped but cumbersome
(right). The proposed Virtual Touch is lightweight, comfortable, and comprehensively assistive (left).
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Figure 3. Virtual Touch helps the BVI touchlessly explore their surroundings. For instance, the BVI is notified of the coffee stand’s presence
when pointing in the coffee stand’s direction.

1.4. Our Solution: Virtual Touch

Previous assistive technologies cannot meet the safety
and health needs of the BVI in times of public health crisis
to reduce physical touching on surfaces. They also fail in
portability, interactivity and computational efficiency when
trying to give the BVI augmented perception. We address
these challenges by investigating ways to realize active en-
vironment exploration in a novel approach. Task specific
algorithms are derived and used to extract key information
via the phone’s camera quickly and accurately, which en-
ables real-time key object detection that improves scene
understanding. Object recognition aided by the determi-
nation of user’s focused attention will facilitate BVI’s ex-
ploration. The work combines deep learning, computer vi-
sion, robotics, and rehabilitation engineering to bring break-
throughs to active mode AI assistance. The development of
Virtual Touch transforms the assistive technology research
from heavy, functionally limited devices or algorithms to a
light-weight, interactive, and intuitive-to-use integrated sys-
tem. Figure 3 illustrates Virtual Touch-assisted touch-free
exploration of the environment.

2. Methods

2.1. Virtual Touch Hardware System

The Virtual Touch hardware system (dataflow shown in
Figure 4) only requires a smartphone (with camera and
GPU/CPU) and a pair of bone conduction headphones. The
smartphone can be mounted at any location on the user such
that it has an unobstructed frontal view of the surroundings
and rests at a height roughly equal to the user’s chest. By
doing so, the smartphone has approximately the same view
of the surroundings as one would see with their eyes from
their head; at the same time, Virtual Touch can be mounted
at a location that is comfortable. Virtual Touch is a Vision
to Audio converter implemented through a smartphone ap-
plication to relay the identification of a target object pointed
to by a BVI person using audio through headphones.

2.1.1 Mobile Optimization

We leverage mobile-friendly computer vision techniques
to ensure the core detection network TouchNet processes
incoming information real-time. For the extraction of
shared features, we utilized specialized convolutional neu-
ral network modules, namely inverted residual connections,
depthwise separable convolutions, and use of longer strides
[59, 67] in preference to pooling layer to decrease the com-
putational workload while largely maintaining the represen-
tational power of the features extracted compared to large,
workstation-oriented network architectures. The features
fed to the predictor contain a combination of high-level and
low-level semantic features about specific regions of the
original image and is the foundation upon which subsequent
visual processing takes place to accomplish classification
and localization of objects.

2.1.2 Bone Conduction Headphone

The proposed system employs bone conduction headphones
given its significant benefits to the wearer [63], including in-
creased situation awareness and more comfortable fit. Tra-
ditional headphones and earbuds occupy the hearing ability
of the BVI, and hearing is one the senses that they heavily
rely on aside from touch. Considering that the BVI user
is expected to wear the headphone for audio cues all the
time when completing tasks, even when outdoors, the loss
of awareness to natural sounds would cause inconvenience
and pose an additional risk of accidents to the BVI. With
bone conduction headphones, there are no speakers going
over or into the ears, interfering with the BVI wearer’s nor-
mal audition. Instead, the transducers sit on the cheekbones
directly in front of the ears, leaving the ears completely
open to the surroundings. Current studies on bone conduc-
tion have been confident about its performance even with
3D audio [42, 41].

2.2. Virtual Touch Software System

In this project, we use our deep learning model to di-
rectly classify the object being pointed at. The goal is to
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Figure 4. Closed loop dataflow for Virtual Touch.

have the model automatically focus on the object in the
finger-pointed region. The network detecting the fingertip
also leads to a region of natural attention, meaning the VI
user’s attention is mentally focused on the spatial direction
around the fingertip. A neural network then extracts image
features and detects objects only from the areas on feature
maps that contain the finger tip location. The network has
default anchor boxes of different aspect ratios at the specific
locations corresponding to the finger tip location in several
feature maps of different scales. For each default box, we
predict both the shape offsets relative to the default box co-
ordinates and the confidences for all object categories. Can-
didates exceeding a confidence threshold are taken as posi-
tions with objects. The predicted object with the highest
confidence score is output as semantic notification to the
user. The high level algorithm is described in Algorithm1.

2.2.1 Finger tip detection
Virtual Touch uses a histogram based approach to separate
out the hand from the background frame. Thresholding and
filtering techniques are used for background cancellation to
obtain optimum results. To detect finger, the hand has to be
differentiated from the background. A skin color histogram

is used to subtracts the background from an image, only
leaving parts of the image that contain skin tone [50, 52, 54].
Virtual Touch then finds the contour of the hand and deter-
mines the convexity defect, which is the furthest point from
the centroid of the contour, as the tip of a finger. Another
method to detect skin would be to find pixels that are in a
certain RGB or HSV range. However, this approach would
be sensitive to changing light conditions and skin colors.
While on the other hand, our histogram approach tends to
be more accurate and takes into account the current light
conditions [50, 52, 54].

2.2.2 Attention driven object detection

Given a finger tip location, we feed to the network a clean
image - the most recently preserved frame without user’s
hand detected. We use a predictor made of a classifica-
tion head and a localization regression head to obtain all de-
tected objects in the finger-pointed region before returning
the one with the highest classification confidence. To this
end, Figure 5 shows the procedural flow of our network.
After the light and fast speed backbone network extracts
features of different scales from the image, the predictor

Figure 5. An illustration of point-based detection. [The images from Google search are copyright to their respective owners]
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Algorithm 1: Algorithm of point-based detection
Data: Images fetched from camera
Result: Object detected given user’s finger pointing

1 initialization of monocular camera, detection model,
and TTS(Text to Speech Synthesizer) engine;

2 capture one frame from the camera;
3 keep it as the previous frame;
4 while getting frame from the camera do
5 detect finger pointing at the current frame;
6 if no finger pointing is detected then
7 keep this clean image as the previous frame;
8 continue;
9 else

10 get finger tip location;
11 send the previous frame to model to detect

objects of interest based on the finger tip
location;

12 if objects are detected then
13 retain one detected object with the

maximum confidence score;
14 inform the user of the object

information;
15 else
16 continue;
17 end
18 end
19 end

takes as input the concatenation of a number of features for
classification and localization task. State of the art object
detection algorithms [55, 38] commonly have anchors over
the entire image and predictors scanning entire feature of
each layer, which does not fit the goal of point-based detec-
tion. TouchNet, on the other hand, attaches anchor boxes
only at areas that contain the finger pointed location and
correspondingly only makes predictions looking at those ar-
eas on feature maps. This can cut off number of parame-
ters to predict and computational cost. Thus, we take an
performance-maximizing approach for the implementation
of desired function at optimal accuracy with the minimum
amount computational workload. The loss function we use
is a combination of losses from the object localization (loc)
and classification (cls) tasks.

L(x, c, l, g) =
1

N
(Lcls(x, c) + αLloc(x, l, g)) (1)

where x is 1 if the prior is matched to the determined
ground truth box, and 0 otherwise, N is the number of
matched priors, l is predicted bounding box, g is ground-
truth bounding box, c is class confidence. The bounding
boxes are expressed by center offsets (cx, cy) and width-
height (w, h). Lcls is classification loss, Lloc is local-

ization loss, and α is hyper-parameter factor for balanc-
ing the weight of the losses determined by cross-validation.
Smooth-L1 loss is used for localization on l and g, and Soft-
max loss is used for optimizingLcls over multiple class con-
fidences c.

3. Experiments
In this section, we carry out a set of experiments for

point-based detection and assess the performance of our
proposed TouchNet. In Sec. 3.1, we describe the details
of datasets used for training and testing of TouchNet. In
Sec. 3.2 we discuss the improvements of TouchNet on real
time processing. In Sec. 3.3, we experimentally find out
the best confidence threshold for TouchNet320 and report
the performance of our trained TouchNet on standard test
dataset. In Sec. 3.4, we demonstrate that our model can be
used in real-world indoor and outdoor scenes.

3.1. Experimental Dataset

Our deep-neural-network model TouchNet for AI-
enabled exploration is trained and tested on PASCAL Visual
Object Classes Challenge (VOC) 2007 and 2012 [22, 23].
Each image contains a set of objects out of 20 different
classes. The 20 classes are: Person - person; Animal - bird,
cat, cow, dog, horse, sheep; Vehicle - aeroplane, bicycle,
boat, bus, car, motorbike, train; Indoor - bottle, chair, dining
table, potted plant, sofa, tv/monitor. Training of TouchNet
used training set and validation set from both VOC 2007
and VOC 2012, which include 16,551 images in total. Eval-
uations in Sec. 3.2 and 3.3 are only based on VOC 2007
test set, which is 4,952 images. During training, all images
went through data transformation to make the trained model
more robust. Techniques used include photometric distor-
tion (random contrast, color conversion, random saturation,
and random hue), random expansion, random cropping, ran-
dom mirroring, resize, and mean subtraction. During eval-
uation, images were only resized and mean-subtracted.

3.2. Detection inference time and computation anal-
ysis

In this experiment section, we demonstrated the im-
provement on inference time by our manipulations on the
TouchNet model and analyzed the cut on computational
costs.
Experimental Setting: To test inference time, we created
one smaller network TouchNet320 and one bigger network
TouchNet512. TouchNet320 uses a backbone feature ex-
tractor of a fully convolutional layer with 32 filters, fol-
lowed by 19 residual bottleneck layers [59]. The outputs for
detection from the smaller backbone feature extractor are of
size 20*20*96, 10*10*1280, 5*5*512, 3*3*256, 2*2*256,
and 1*1*64. Each of the six feature maps is attached with
6 anchor boxes at the corresponding location of the finger
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model manipulation FPS input size
TouchNet512 Full feature detection + NMS 20 512*512
TouchNet512 Partial feature detection + NMS 21 512*512
TouchNet512 Partial feature detection + Confidence threshold 25 512*512
TouchNet320 Full feature detection + NMS 52 320*320
TouchNet320 Partial feature detection + NMS 54 320*320
TouchNet320 Partial feature detection + Confidence threshold 109 320*320

Table 1. Comparison of inference time of models on PASCAL VOC 2007.

tip. TouchNet512 uses a bigger backbone feature extractor.
It has 5 sets of 3 x 3 filters with stride of 2 in convolu-
tion layers and same padding in pooling layers 2 x 2 with
stride of 2 [61], which are then followed by two additional
1 x 3 convolution layers with stride of 2 and padding of
1. The output features for detection are of size 64*64*512,
32*32*1024, 16*16*512, 8*8*256, 4*4*256, 2*2*256, and
1*1*256. Each feature map is attached with 4, 6, 6, 6, 6, 4,
and 4 anchor boxes respectively, all at locations correspond-
ing to the finger tip location. For each model, we tested full
feature detection v.s. partial feature detection and NMS v.s.
confidence threshold.

Result: Table 1 shows the increase in frame per second
(FPS) or reduction of inference time by our design. Given
that most of the inference time is spent on the backbone net-
work [55, 38], using a faster base network could improve
the speed significantly. Our experimental results confirm
that observation as TouchNet320 has more FPS in general.
We therefore use TouchNet320 as the deep learning neural
network of Virtual Touch. On top of that, detecting objects
only on part of features from all layers instead of entire fea-
tures reduces the inference time at the predictor. Detecting
objects based on user’s attention simulates how humans per-
ceive their surrounding environment in the most natural and
cost-effective manner. Traditionally, considering the large
number of boxes generated from all over the image, it is es-
sential to perform non-maximum suppression (NMS) dur-
ing inference. For example in SSD300, NMS with jaccard

overlap of 0.45 per class and keeping the top 200 detections
per image costs about 1.7 msec per image, which is close to
the total time (2.4 msec) spent on all layers after backbone
network [38]. In our model, there is no need for NMS. By
using a confidence threshold, we filter out most unwanted
boxes in a much faster way.

3.3. Detection performance analysis with pointed
finger

In this section we evaluated the performance of our se-
lected model TouchNet320. We designed a special evalu-
ation metrics that fit the goal of AI-assisted environment
exploration.
Experimental Setting: Here we tested the performance of
TouchNet320 on 4,952 images in the VOC 2007 testset in
order to determine the best confidence threshold. Each im-
age was randomly assigned a point location which could be
anywhere within the range of the image. We then defined
Semantic Label Accuracy for evaluating the task-specific
pointed-based detection model:

semantic label accuracy =
true positive+ true negative

number of predictions
(2)

where true positive is defined as correct label prediction
of a object that contains the point or of the nearest object
whose horizontal/vertical deviation from point less than half
of image width/length. Different from the traditional met-
rics mAP, evaluation of TouchNet prediction does not have

Figure 6. Comparison of performance of the TouchNet320 model on PASCAL VOC 2007, when using different confidence thresholds.
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to worry about Intersection over Union (IoU) between pre-
dicted bounding box and ground truth box, as long as what
the user’s intended target object gets detected.
Result: Figure 6 shows the semantic label accuracies for
the TouchNet320 network with different confidence thresh-
olds. The best accuracy for the TouchNet320 network is
87.52% when the confidence threshold is 0.12, a perfor-
mance value higher than the state of art mAPs on object
detection [70]. We also conducted analysis on false neg-
ative predictions, which could assist future improvement.
False negative could arise from a finger tip location on the
edge of the target object. In this case, the part of feature

maps containing the finger tip location and the part of fea-
ture maps containing the center of object might not be the
same. Predictions made based on the location of finger tip
is thus likely to be associated with a low confidence along
with the true label of the object. Or it could be a hard-to-
see object, for example, an object only partially present in
the frame, or an object that is very far and small. This is-
sue could be overcome with more layers in the backbone
network, a larger input resolution for the network, or even
more data augmentation during training.

Figure 7. Examples of successful point-based detection in outdoor scenes. [The images from Google search are copyright to their respective
owners]

Figure 8. Examples of successful point-based detection in indoor scenes. [The images from Google search are copyright to their respective
owners]
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Figure 9. Example of detection result (TV monitor) dependent on backbone model. Left is false negative when using the TouchNet320
network; Right is true positive when using the TouchNet512 network. [The images from Google search are copyright to their respective
owners]

3.4. Indoor and Outdoor Scene Detection Experi-
ments

To evaluate our point-based detection model in actual in-
door and outdoor scenes in real time, we tested it with our
hands pointing at objects of interest in different settings.

Experimental Setting: To enable the video mode point-
based detection, the user places their hand in the center of
camera captured frames before using the Virtual Touch de-
tection function. The finger tip detection algorithm takes
skin color samples from the user’s hand and then succeed-
ingly extracts pixels from those frames to generate an HSV
histogram. For the largest contour detected, it finds the hull,
centroid, and defects. Among all these defects the appli-
cation finds the one that is farthest from the center of the
largest contour. This point location is kept as the location
of pointing finger. The video mode takes frames at 30 FPS.

Result: When we tested video mode detection with a fin-
ger pointing to various objects, the objects being pointed
at were correctly detected. We simulated some hands on
scene images as examples for the purpose of display. The
results in Figure 7 and Figure 8 show that Virtual Touch
with its core TouchNet320 can successfully detect object at
where the finger points to in real world settings. The objects
detected can be in indoor scenes or outdoor scenes, from a
very close distance to 10 meters away. Figure 9 shows that a
heavier backbone network could capture more object. Espe-
cially when a larger input size is allowed, 512*512 instead
of 320*320 for example, higher resolution leads to fewer
detection failures, though it also means more processing
time. Overall, our TouchNet320 based Virtual Touch has
an optimal combination of speed and accuracy, and it has
been proven useful in real life application.

4. Conclusions
In this paper, we present a novel assistive low-vision

platform, Virtual Touch, that augments environmental un-
derstanding for the BVI while keeping them safe from con-
tracting virus through touch-free exploration. We designed
an attention based mechanism for intuitive indication of fo-
cus point using the position of fingertip. With that, we de-
signed an end-to-end point-based neural network TouchNet
to predict the locations and categories of pointed objects in
real time. The experimental results demonstrated that this
system can help the BVI understand their surroundings in
an effective and efficient way. Therefore, the Virtual Touch
assistive system backed by TouchNet addresses the design
requirements for risk reduction during a pandemic.
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