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Abstract

In this work, we propose an efficient normal estimation

method for depth images acquired by Time-of-Flight (ToF)

cameras based on feature pyramid networks (FPN). We per-

form the normal estimation starting from the 2D depth im-

ages, projecting the measured data into the 3D space and

computing the loss function for the point cloud normal.

Despite its simplicity, our method called ToFNest proves

to be efficient in terms of robustness and runtime. In or-

der to validate ToFNest we performed extensive evalua-

tions using both public and custom outdoor datasets. Com-

pared with the state of the art methods, our algorithm is

faster by an order of magnitude without losing precision on

public datasets. The demo code is available on https:

//github.com/molnarszilard/ToFNest

1. Introduction

The 3D perception for autonomous robots is becoming a

standard today. Typical sensors include LiDAR and RGB-D

cameras, which capture the geometric characteristics of the

environment in the form of sparse point clouds. Although

there is a wide range of the 2D convolutional neural network

solutions for the spectral cameras, for the radial information

represented by discrete points the processing solutions are

rather limited. This is mainly due to the challenges of the

3D spatial convolution operator which does not scale well

with the number of points from the point cloud or voxels

from the depth data.

An essential geometric feature of a point cloud is the

computed normal for each point in the 3D data. This lies

at the basis of several methods used for object recognition

[34], pose estimation [14] segmentation [10], mesh genera-

tion [18, 31] or ray-tracing [5] thus the runtime and robust-

ness of this preliminary processing step is relevant.

The normal estimation challenges are mainly due to the

varying sampling density of a point cloud as well as the

noise corrupting the measurement or representation of the

environment. A standard method for normal estimation in-

cludes the selection of a support size for the patch attached

to the point, the estimation of the geometric properties of

the patch (e.g. the parameters of the fitted plane) and the

computation of the normal vector concerning the estimated

patch parameters [20]. Although this method is runtime ef-

ficient, the choice of the point neighbour patch size is non-

trivial: small scale patches will reflect the fine grade charac-

teristics of the objects, being prone to measurement artifacts

while larger support size has better robustness for noise,

but fails to encode the small scale details. This suggests

an adaptive method for the normal support size, for which

many methods were proposed including conventional [16]

and CNN based algorithms as well [4]. The major draw-

back of these algorithms is their runtime, i.e. they fail to

run in real time setups.

In this work, we propose an efficient normal estimation

method for ToF depth cameras, which is able to provide ro-

bust normal estimation similar to the adaptive algorithms in

the state of the art, with almost real time runtime character-

istics on embedded platforms. Inspired by the multi-scale

pyramid approach of the feature pyramid networks (FPN)

[25], we propose an encoding on different levels of the input

ToF depth images. For computing the point cloud normal,

we lift at the training phase the 2D depth image points in

the 3D metric space and compare it with the reference nor-

mal. Based on the ground truth normal, the algorithm can

successfully encode how the reference was generated from

single scale, multi-scale or adaptive methods, as well.

The contribution of this paper is summarized as follows:

1) We propose a novel feature pyramid network-based ar-

chitecture for the point cloud normal estimation, which can

encode multi-scale normal estimation inheriting from the

training data; 2) We solve the normal estimation problem at

the training phase for the ToF depth images by lifting the

2D points in the 3D space, thus directly operating on point

clouds normal; 3) We perform extensive testing of the algo-

rithm based on publicly available datasets as well as custom

data. Our baseline algorithm is generic enough to be aug-

mented with 2D information either from IR or RGB images,

thus yielding to a multi-modal normal estimation approach.
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2. Related work

The normal estimation of the point clouds has a long his-

tory in the research community, with publications on this

topic dating back several years [20]. It is still a hot topic

with a considerable amount of publications in the last year

focusing on learning based methods [24, 38, 26, 36, 3]. We

review the normal estimation methods grouping them into

traditional and learning-based techniques as well as multi-

modal approaches.

2.1. Traditional normal estimation

The classical approach for normal estimation is based on

Principal Component Analysis (PCA) [20], which consid-

ers a point neighbourhood with a certain size (support size)

and by analyzing the covariance in this local patch defines

the normal vectors as the eigenvector corresponding to the

smallest eigenvalue. Starting from this idea, derived works

analyzed the effect of support size, curvature, sampling den-

sity and noise effect on the normal estimation, [9, 16, 6]

which often require additional computational steps, thus in-

creasing the overall complexity [22].

Other approaches make use of the Voronoi cells of the

3D points [28, 13, 12]. Although these methods can encode

the sharp feature, they are prone to errors. To handle this

problem, the PCA based Voronoi approach proved to be a

stable solution [1]. Multi-scale approaches also proved to

be robust to density noise corrupted point clouds [27, 37]

while Hough transforms also yield promising results [7].

Robust results were achieved based on the assumption

that the point neighbour supports can be considered planar

patches, especially for sharp edges in point clouds [2, 11].

2.2. Learningbased methods

The progress in the field of normal estimation has been

platooning until the appearance of the learning-based ap-

proaches, which showed that a considerable enhancement

can be achieved by using recent deep learning-based tech-

niques [21, 24, 8, 35, 38, 17, 26, 4]. Even though the deep

learning-based methods require large amounts of training

data, or may be prone to adversarial attacks or have exhaus-

tive runtime, their popularity is still growing. These meth-

ods can also be referred as adaptive methods.

The first approaches made use of 2D images either from

the point cloud projection or the depth images from the ToF

cameras. The main advantage of these solutions is in the

straightforward use of 2D convolutional operators. The or-

dered point cloud or voxel-based approaches proved to be

computationally expensive, the complexity of these variants

growing fast with the number of points from the point cloud.

The second class of approaches focuses on unstructured

point clouds and after the appearance of the point-set ap-

proach proposed in [32], this was reused for normal estima-

tion in the works of [17, 21] by introducing a multi-scale

set oriented approach for normal estimation. In [3] surface

fitting approach based on normal estimation is considered.

Subsequently, the multi-scale approach combined with Fis-

cher vectors was proposed in [4] combined with multiple

expert networks for normal estimation.

2.3. Multimodal approaches

The multi-modal approaches make use of heterogeneous

data including radiometric and spectral input, as well. A

good overview of the recent multi-modal data processing

including normal estimation can be found in [15]. Even

though in our approach we focus on the depth images as

a primary input source for the normal estimation, we aug-

mented our baseline solution with the IR images from the

ToF cameras as well, thus yielding to a multi-modal config-

uration.

The method presented in [4] is the closest to our ap-

proach, featuring the supervised 3D normal learning and

the work by [25] as the architecture of the input network

is based on the former but adopted for the normal estima-

tion task, while the most competitive in terms of the runtime

is the solution proposed in [24].

3. Our approach

The key insight in our approach was to combine the

multi-scale capturing abilities of the feature pyramid net-

works (FPN) [25] with the normal estimation for the ToF

cameras with known intrinsic parameters. Due to the spe-

cific depth measurement of these cameras, the depth infor-

mation is stored in 2D depth images, which can be eas-

ily projected into the 3D space yielding an organized point

cloud. Even though there is no one to one mapping be-

tween the different pyramid levels and the normal support

sizes in the point cloud, these variable scales contribute to a

multi-scale normal estimation in the reprojected 3D space.

This intuition is supported by how the compact surfaces are

measured with ToF cameras: they are likely to be repre-

sented as compact patches in the depth image. According to

our knowledge, the FPN based ToF specific depth measure-

ments were not yet treated in the main literature, the major

advantage of the proposed method being the scalability and

low runtime.

The pipeline of our approach is shown in Fig. 1 con-

taining the following parts: the input 2D ToF depth image

is stored on different channels for the FPN (either contain-

ing only the depth images multiple times or having other

information such as infrared on other channels), the ground

truth normal estimations is encoded in the RGB space for

the training phase and converted to 3D normal vectors for

the loss computation; point cloud with normal generated in

the evaluation phase. In this way, we operated directly on

the 2D depth images and perform the normal estimation in

a 3D space.
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we rather focused on an efficient solution also from runtime

perspectives.

The predicted layer Pred1 summarizes the contribution

of the individual Di layers and the Pred2 upsamples the

required output resolution (in our case being identical with

the input depth image resolution).

3.2. Normal loss function

For the normal loss function, we investigated several

variants including gradient, curvature loss, or the direct nor-

mal difference lost. The latter seemed to be the most effi-

cient in terms of the normal estimation robustness. Starting

from the normalized loss computation [4], we adopted the

following loss function:

Lnormal =
1

M

M
∑

1

(

‖Ni ×NGT ‖

‖Ni‖ · ‖NGT ‖

)

(1)

where M is the number of points in the point cloud, Ni is

the normal estimate and NGT is the ground truth normal

value.

In the evaluation phase of the proposed architecture, we

used the absolute error angle between the ground truth and

the predicted normal.

4. Evaluation

For the evaluation of the proposed method, we conducted

a large scale test. We compared our method in terms of nor-

mal robustness and runtime against traditional and learning-

based methods as well. We also investigated the effect of

noise on the depth data, which is a common problem for

depth measurements, especially for the outdoor ToF camera

images.

4.1. Dataset used for evaluation

As public reference dataset, we considered the indoor

NYU_V2 one [29] with normals based on [23] as ground

truth, because comparing it to [24] resulted in smoother nor-

mal estimates. While for custom testing we created indoor

and outdoor data with RGB-D data from ADI ToF cam-

era with ground truth data from generated with a multiscale

PCL [33]. We would mention that these two datasets were

generated with a camera and not from a simulated model,

which resulted in realistic dataset.

4.2. Performance evaluation and comparison

To encode efficiently the normal information for the

training, we encoded the normal vectors into the RGB space

which we, subsequently, converted at the output to point

clouds with the normal vectors. These normal vectors then

were compared to the normal vectors of the ground truth

point clouds in terms of absolute normal orientation errors.

(a) Input encoded in the RGB

space

(b) Output of the estimation

error distribution

Figure 3: The result obtained from our method encoded as

a heat map for the absolute normal orientation error

All of these methods returned un-oriented normal vectors,

i.e. we considered the orientations vectors the same for the

flipped ones. At the output visualization of our estimate,

we considered the heat map of the absolute error of the nor-

mal orientation, such as this is visible in Fig. 3. On this

image, we can also see that the predicted normals seem to

be slightly blurred at the edges. This might come from the

fact that although the FPN works with many different layer

sizes, it is not capable of per-pixel normal estimation, which

means that in some cases it has a smoothing effect, espe-

cially at the edges.

For training purposes, we augmented the original

NYU_V2 dataset containing 1449 depth images with sim-

ple horizontal and vertical flips as well as adding some

Gaussian noise to the depth images. With this augmenta-

tion, we managed to cover the surface orientations, which

are rarely present in the indoor scenes, thus yielding to more

generic training. For the training dataset, we used more than

7.5K images, with an average point cloud size of 200K per

depth image, while we used about 3.5K for testing and the

original 1449 images as the evaluation dataset.

For the performance evaluation, we considered as pri-

mary metrics the mean absolute difference of the angle er-

rors in deg between the estimated and the ground truth nor-

mal as well as the average histogram of the test cases com-

puted in percentage as the dot product between the two vec-

tors. Beside the normal estimation quality, we were also in-

terested in the runtime of the algorithms, as this is a major

criterion in the processing chain of several methods relying

on normal estimation.

Based on these criteria, using the public dataset, we com-

pared our method against the Nesti-Net [4], PCPNet with

single and multiple scales [17], the single threaded normal

estimation used in the Point Cloud Library (PCL) [33] as

well as the Hough transform based normal estimation [7],

and at last the Lessen et. al [24] method. In order for the

PCL comparison to be fair, we considered the average of
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Table 1: Summary of the comparison with other methods

Comparison between the normal estimation methods

Own Nesti-Net [4] PCPNet ss [17] PCPNet ms [17] PCL [33] Hough [7] Lenssen [24]

Avg. hist. [%] 0.922 0.913 0.911 0.923 0.914 0.829 0.897

Abs. angle [deg] 22.78 24.08 24.36 22.52 23.91 33.95 26.23

Avg. runtime [s] 0.015 1200 234 596 7.09 2.7 19.4
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Figure 4: The histogram of the normal estimation for differ-

ent methods

the error from different support sizes used for normal esti-

mation (from 2 to 10 centimeters, regarding the accuracy,

the 4 centimeters support size was the closest to the aver-

age). The histogram dispersion of the quality indicator for

the tested methods is presented in Fig. 4.

The results of the comparison are summarized in Table 1.

The best normal estimation performance measured as mean

angle error was achieved by the multi-scale PCPNet, our

approach was with almost the same range of absolute er-

ror but featured a runtime that was orders of magnitudes

smaller. The Nesti-Net was in the same range of absolute

error, however this method had far the longest evaluation

time required for an estimate. In terms of runtime, the PCL

and Hough methods were close to our algorithm running on

CPU. Although, for PCL there are other variants, the multi

threaded PCL is computed in about 1 second.

We also tested the Integral Image method from PCL, and

although it was about as fast as our method, it produced

poor results only around 0.82. A visual comparison of a

typical output for other methods tested in our experiments

is visible in Fig. 5, for the same pointcloud visualized in

Fig. 3.

(a) Nesti−Net (b) PCPNet

(c) PCL (d) Hough

Figure 5: Comparison of the output of the methods on the

same data

4.3. Performance evaluation on noisy data

To evaluate the robustness of ToFNest, we tested the nor-

mal estimation in presence with different levels of Gaussian

noise corrupting the depth data. In order to do so, we gen-

erated the noisy data from the depth images with additional

Gaussian noise, the covariance ranging from 1cm − 10cm

and compared it against the normal ground truth from the

clean data.

The comparison in terms of average histogram for the

different methods is shown in Fig. 6. The best performance

against the noise robustness was achieved by ToFNest fol-

lowed by the PCPNet, while the most affected method was

the one based on Hough transforms.

4.4. Runtime performance evaluation on different
platforms

As for many applications, the runtime is relevant; we

tested the performance of our method on different platforms

ranging from embedded devices to cloud servers. For the

embedded devices we considered the Jetson family from
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Figure 6: The effect of noisy data for different normal esti-

mation methods

Nvidia including the NX and AGX variants, while for the

cloud solution we used the Google Colab. As a baseline,

we considered a commercial grade RTX 3080 GPU en-

abled PC.

Table 2: Summary of the runtime comparison for different

devices with our method

Runtime comparison on different platorms

Device RTX

3080

Jetson

NX

Jetson

AGX

GTX

1060

Colab

Time [s] 0.04 0.31 0.234 0.047 0.11

The results of the comparison are summarized in Tab. 2.

As it can be seen in this summary, our method runs with

4 fps even on embedded devices, thus yielding an efficient

runtime solution also for mobile robot applications.

4.5. Performance evaluation on custom data

For our custom training and testing we considered two

datasets. We created the datasets using a Pico Zense

DCAM710 which is built on the ADDI9036 CCD TOF Sig-

nal Processor. Using this camera we could record the infra-

red and RGB images along with the depth images, as well.

We recorded several types of environments including of-

fice, hallway and laboratory workspace. We have also aug-

mented these images acquiring about 10K images that were

split into training and testing datasets, about 66-33 rate.

For the outdoor dataset, we acquired with the same

camera but with tuned noise reduction parameters images

in normal daylight conditions. As ground truth for these

datasets, we used manually scale tuned PCL method, nev-

ertheless this can be replaced with an arbitrary method. We

RGB GT Prediction Diff

Figure 7: Indoor / Outdoor results on custom data

considered PCL because it runs faster, and tuning the sup-

port size it can give us fair results. This tuning is feasible in

this case, but if we wanted to use this method it might not

be valid.

Typical results from the indoor and outdoor scenes as

well as the normal estimate and difference heat maps are

visible in Fig. 7. The results of the indoor and outdoor

evaluations are summarized in Tab. 3, with better results in

the indoor data as the outdoor dataset was more affected by

measurement artifacts. Also, we mentioned previously that

our model tends to smooth the prediction, but as we have

seen, it is not that bad. This would be the base for future

point cloud smoothing methods.

Table 3: Summary of the custom Indoor/Outdoor evaluation

Custom dataset performance

Indoor Outdoor

Avg. hist. [%] 0.959 0.952

Abs. angle [deg] 16.46 17.82

4.6. Cross validation

For further testing purposes, we used the model which

was trained with the NYU_V2 dataset and applied it to our

dataset. Here the average quality was 0.901, while with the

native model the average quality was 0.959. This can hap-

pen because the camera that we used was different; however

if we compare this result to the NYU_V2 evaluation (avg.

quality is 0.915), we can consider it acceptable.

In addition to this, we created in a simulated Blender

model about one of our laboratory (where we made the in-

door real dataset), and with the help of Isaac Sim [30] which

is a simulation library in Omniverse created by Nvidia, we

created a synthetic dataset in this scene. Testing this dataset

with the model trained on the NYU_V2 dataset, we got 0.96

% avg. quality. But if we test the NYU_V2 dataset with the

model trained on the synthetic data, we got only 0.8. The

performance drop can be due to the differences of the sim-

ulated render in the Isaac Sim, which returned near-perfect

depth images.
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4.7. Training details

To be fair with the other learning-based training methods

used in our comparison, we usually trained our models for

10 epochs, featuring a learning rate starting from 1e-3 with

the SGD optimizer. In every epoch, the model evaluated all

the data from the dataset, and after each batch a loss was

calculated. Our method was implemented using PyThorch,

the code being publicly available on github. The baseline

comparisons were done using an Nvidia RTX 3080 GPU,

and an Intel i9-10900K with 64GB RAM commercial PC.

4.8. Generalization to multimodal data

The method itself is generic to accept additional infor-

mation besides the depth image: 3 layers are included as

input, for which 1 depth is used for pointcloud normal es-

timation, while the two additional layers enable to encode

camera specific information such as IR intensity or color

data, as well. According to our findings, these influence on

limited manners the normal estimation, but allow the exten-

sion of the method.

5. Summary

In this work, we presented a runtime efficient and robust

learning-based normal estimation method for the depth im-

ages acquired by ToF cameras. The method is based on the

FPN architecture tailored to the depth image specific de-

tails with loss functions focusing on the absolute normal

orientation difference. We evaluated our method against

the traditional and learning based variants on large scale

public indoor and custom outdoor data, our method being

with similar normal estimation performance but with orders

of magnitudes faster, running efficiently even on embedded

devices. The method is generic enough for any central pro-

jective camera type featuring known intrinsic parameters re-

turning radial information.

As future work, we intend to extend our normal estima-

tion pipeline with point filtering variants such as statistical

outlier removals. These ideas are built upon the precom-

puted normals for a point cloud, achieving in this way a

runtime efficient preprocessing pipeline for ToF depth cam-

eras.
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