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Abstract

Real-world Super-Resolution (SR) has been tradition-
ally tackled by first learning a specific degradation model
that resembles the noise and corruption artifacts in low-
resolution imagery. Thus, current methods lack gener-
alization and lose their accuracy when tested on unseen
types of corruption. In contrast to the traditional proposal,
we present Robust Super-Resolution (RSR), a method that
leverages the generalization capability of adversarial at-
tacks to tackle real-world SR. Our novel framework poses
a paradigm shift in the development of real-world SR meth-
ods. Instead of learning a dataset-specific degradation, we
employ adversarial attacks to create difficult examples that
target the model’s weaknesses. Afterward, we use these ad-
versarial examples during training to improve our model’s
capacity to process noisy inputs. We perform extensive ex-
perimentation on synthetic and real-world images and em-
pirically demonstrate that our RSR method generalizes well
across datasets without re-training for specific noise priors.
By using a single robust model, we outperform state-of-the-
art specialized methods on real-world benchmarks.

1. Introduction

Super-Resolution (SR) is the task of increasing the res-
olution of a given image. The ever-growing use of deep
learning has fostered the creation of SR models that ob-
tain remarkable results with high fidelity on traditional SR
benchmarks [25, 27, 31, 41, 48, 58]. These conventional
models are trained in a supervised manner with a High-
Resolution (HR) and a corresponding Low-Resolution (LR)
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Figure 1. We present the comparison between our method and
state-of-the-art methods: Impressionism [18] and ESRGAN-
FS [12], for two different types of degradations: NTIREsyn [29]
and AIMsyn [30]. For reference, we show the bicubically up-
sampled input, the result of a supervised SISR method (ESR-
GAN [48]), and the ground-truth (GT). Blue frames denote train-
ing and validation on the same dataset. Red frames denote train-
ing and validation on different datasets. Green frames denote our
method.

image pair. Since capturing the exact same scene in both
HR and LR is complex and time-consuming, traditional
SR datasets use clean HR images and the LR images are
usually generated through a bicubic down-sampling opera-
tion [1, 45]. Using a bicubic kernel on clean HR images
simplifies the ill-posed SR task because it ignores the fact
that real-world images are subjected to sensor noise and
artifacts. Thus, models trained with clean, paired datasets
tend to underperform when evaluated on real-life scenes.

This limitation motivated the study of real-world SR on
datasets with synthetic and natural corruptions [29, 30].
Several benchmarks design real-world artifacts and corrup-
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tions under different assumptions or from varying sensors,
and current solutions have to produce a specific model for
each one. Consequently, state-of-the-art models for real-
world SR [12, 18] generate photo-realistic results only when
they are evaluated with the particular dataset for which they
were trained, failing to generalize to new datasets with un-
seen corruptions. As an example, Fig. 1 shows two of
the best methods in real-world SR, Impressionism [18] and
ESRGAN-FS [12], evaluated on two benchmark datasets
with different artificial corruptions. When evaluated on the
image from the same training dataset (blue frames), both
methods show excellent performance. However, they cre-
ate significant artifacts in the image from the unseen dataset
(red frames).

Even though the different noise in each of the input im-
ages does not modify human perceptual recognition (i.e.,
we can easily discriminate the introduced artifacts in both
cases), state-of-the-art models are not robust to unseen
noise. To the best of our knowledge, there is no single real-
world SR method that can generalize across different types
of noise.

A way to assess a model’s robustness to unseen noise is
through Adversarial Attacks [32]. These attacks are based
on adversarial examples, which are small intensity pertur-
bations to the input image specifically designed to trick
the model into failure cases. Adversarial examples have
demonstrated improvement in noise generalization of mod-
els for various tasks such as classification [32, 44], semantic
segmentation [3, 9, 49] and object detection [54]. Through
robust training [32], models learn to be invariant to noise by
creating more human-perception aligned filters [11].

Choi et al. [6] explored the effect of adversarial attacks
on traditional SR methods, finding that these methods are
brittle and easy to fool under adversarial examples. In more
recent work, Choi et al. [7] proposed an adversarial defense
by modifying the intermediate filters of the network, thus
improving the performance of traditional SR models under
their previous attacks. However, their work was focused
on evaluating the methods based on pixel-wise metrics. To
date, there are no works that report the study of robust train-
ing for the real-world SR problem.

In this work, we leverage adversarial attacks to create
a real-world SR model robust to unseen noise types. As
illustrated in Fig. 2b, we start with a standard SR model
trained on a clean dataset and find adversarial examples of
the LR input that damage the performance of the model. Si-
multaneously, we employ the created examples to teach the
network that small perturbations in the LR image should re-
sult in the same HR ground-truth. Our approach presents
a paradigm shift in the study of real-world SR because, in-
stead of generating LR images with a type of noise that re-
sembles that of a specific dataset, we focus on making the
SR model more robust to any input. Fig. 1 shows the gener-

alization capability of our method. Even though our model
has never seen images from either of the artificially corrupt
datasets, by applying robust training, we are able to obtain
photo-realistic HR images for both types of input noise.

We perform extensive quantitative and qualitative eval-
uations on data from the NTIRE 2020 Challenge on Real-
World Image Super-Resolution [29] and the AIM 2019 Real
World Super-Resolution Challenge [30]. We show that our
single model, trained robustly on clean images, achieves
state-of-the-art performance compared to methods with spe-
cialized models for each specific dataset. We also provide
qualitative evaluation and non-reference perceptual metrics
for images retrieved from an iPhone 3 [17] and facial super-
resolution in the wild [51].

Our main contribution is twofold: first, we propose
a novel use of adversarial attacks in real-world super-
resolution. Second, through the use of adversarial ex-
amples, we are able to create a generalized real-world
SR model that achieves state-of-the-art results without
training or fine-tuning on corrupt or real-world datasets.
The code for reproducing our results is available at
https://github.com/BCV-Uniandes/RSR.

2. Related work
2.1. Image Super-Resolution

2.1.1 Single Image Super-Resolution

Single Image Super-Resolution (SISR) is a problem that
has been widely studied in computer vision [8, 37, 50, 16].
Early approaches incorporated simple linear interpolation
methods [21, 56] estimating the correlation [2] or covari-
ance of the low-resolution data [26]. Nevertheless, those
methods fell short to fully capture the high frequencies of
the images.

More recent methods have focused on improving the
model’s architecture to have better performance, either
optimizing for pixel-wise scores (e.g., PSNR-oriented)
or GAN-based [13] perceptual scores (e.g., LPIPS-
oriented [57]). SISR is very popular [25, 27, 31, 41, 48, 58]
in its simplified form, where it is relatively easy to create
paired datasets using a known downsampling strategy (e.g.,
bicubic interpolation). However, assuming prior knowl-
edge of the downsampling kernel is unrealistic for images
in the wild, as the kernel and the type of degradation are
unknown, and therefore, SISR models fail to generalize.
Moreover, images in the wild might contain corruptions and
artifacts that should be removed in the super-resolution pro-
cess. Therefore, blind SR approaches [4, 34, 15, 55, 38]
tackle unknown degradation operations, whereas unsuper-
vised real-world approaches [28, 33, 5, 53, 22, 39, 60]
tackle severe degradation or compression artifacts in low-
resolution images. Since our approach aims at performing
super-resolution robust to noise and artifacts, we focus on
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the real-world literature.

2.1.2 Real-World Super-Resolution

Real-world images contain noise or corruptions inherent to
the sensor acquisition, or data compression artifacts. Tra-
ditional SR techniques [48, 58, 25] fail at this task because
they enhance the artifacts. Due to the problem formula-
tion, it is hard to get paired real-world low-resolution and
high-resolution alignment, so this problem is traditionally
tackled in an unsupervised fashion by first learning a degra-
dation procedure that can be used to produce an artificially
paired dataset. As using paired datasets has been widely
studied by SISR approaches, real-world methods focus on
the degradation stage, that is, finding the best way to inject
noise that resembles the one in the low-resolution dataset
(Fig. 2a).

2.2. Adversarial Attacks

Adversarial attacks on Deep Neural Networks (DNNs)
were firstly conducted by Szegedy et al. [43]. Their results
showed that DNNs could be fooled by imperceptible per-
turbations that do not modify the image semantics. Partic-
ularly, Choi et al. [6, 7] demonstrated that SR methods are
susceptible to adversarial attacks. Formally, an adversar-
ial attack is a procedure that, given an image, produces a
poisoned input image that the DNN misclassifies with high
confidence [14]. Large efforts have been devoted to devel-
oping models that are both accurate and robust to attacks.
Adversarial Training (AT) [32], a technique that has stood
the test of time, casts the problem of training adversarially-
robust models as one of robust optimization of a saddle-
point problem. In practice, AT trains a DNN on adversarial
examples generated on-the-fly through Projected Gradient
Descent (PGD) by aiming at maximizing the DNN’s loss.

While much of the initial concern regarding the brittle-
ness of DNNs against attacks was related to security con-
cerns, recent evidence provides new perspectives. Stutz
et al. [42] explored how adversarial examples may be re-
lated to generalization in learning algorithms. In relation
to perception, Engstrom et al. [11] demonstrated that ro-
bust features are aligned with human perception, and hence
adversarial robustness can serve as a prior for learned rep-
resentations. Further, Santurkar et al. [40] showed that
adversarially-robust classifiers prove to be useful for image
synthesis tasks. Inspired by these findings, in this paper we
demonstrate how adversarial robustness can be used as a
useful prior for learning DNNs for real-world SR. In partic-
ular, we show that by using adversarial attacks we can by-
pass the need of corrupted low-resolution data, and train the
robust super-resolution architecture directly, thus producing
a single model that generalizes to several datasets.

To avoid ambiguity with Generative Adversarial Net-

works (GANs), we refer to Adversarial Training as Robust
Training.

3. Method
Traditionally, real-world SR approaches design hand-

crafted noise models for learning dataset-specific degrada-
tion and using it to create new LR images to train their
SR models (Fig. 2a). However, these models tend not to
generalize well to new datasets with an unknown degrada-
tion distribution. Unlike traditional approaches, our method
creates LR images that are perceptually challenging for the
SR model in order to improve its generalization capability
(Fig. 2b).

Inspired by recent works that have drawn a link between
adversarial robustness and both generalization and human
perception [11, 40], we exploit adversarial robustness as
useful prior knowledge for learning SR models. We under-
score that, as with any ill-posed problem such as SR [52],
useful priors are of utmost importance: what may prove
to be a reasonable output from a SR model strongly re-
lies on vast amounts of prior information humans possess
about the real world. Thus, in search of SR models with
improved performance on unseen types of degradation, we
leverage adversarially-robust training to induce priors cor-
related with human perception. In particular, we encourage
the training procedure to prefer robust solutions against ad-
versarial attacks during the learning of SR models.

3.1. Mathematical Formulation

Super Resolution. Let IHR be a HR image, and ILR be
a LR image downsampled ↓s by a factor of s as

ILR = (IHR ⊗ k) ↓s + n, (1)

where k is the downsampling kernel, and n represents addi-
tive noise. In common SR methods [48, 25], this formula-
tion is simplified by using a bicubic kernel and small in-
dependent identically distributed (i.i.d) additive Gaussian
noise [59]. In real-world approaches, n is not neglected,
as the corruptions severely alter the low-resolution image.
To circumvent this issue, we optimize n for each image
using adversarial attacks. Without loss of generality, our
model can be extended to blind approaches by considering
unknown kernels k.

Our rationale to include adversarial examples that resem-
ble real-world LR images is as follows: Employing GAN-
based methods that include a generator to inject noise [5,
28] introduces a domain shift that compromises the per-
formance during inference. Hand-crafted methods [18, 12]
do not introduce a domain shift because of their simplicity
(Fig. 2a) but require extensive manual labor to simulate dif-
ferent types of corruption. By using adversarial attacks, we
can modify the injected noise and thus optimize it to find the
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Figure 2. Traditional vs. Robust Super-Resolution. In (a) Traditional Real-world Training, methods use hand-crafted noise models to
learn dataset-specific degradations. In contrast, our (b) Robust Training strategy employs optimized adversarial examples to train a single
SR model robustly.
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Figure 3. Noise Optimization. We create adversarial examples
by finding iteratively a noise that exploits the weaknesses of the
generator. Once the t iterations of the optimization process are
complete, the adversarial examples are used to improve our SR
model during our Robust training.

hardest type of noise in a data-driven way (Fig. 2b) while
maintaining the semantic information present in an image.
With this approach, we avoid a domain shift and present an
optimized method to faithfully remove noise and corruption
robustly.

Robust Training. In a fashion similar to [32], we gener-
ate adversarial examples on-the-fly via the Projected Gradi-
ent Descent (PGD) method. PGD is an optimization pro-
cedure for finding `p-bounded adversarial examples. In
this work, we focus in particular on `∞-bounded examples,
computed as repeated iterations of

xadvt+1 =
∏
X

(
xt + α sign

(
∇xt

L(xt, y)
))
, (2)

where
∏

is the projection operator, xt+1 is the input image
of the attack iteration t+1, y is the ground-truth,X denotes
the set of valid images (i.e., the intersection of the `∞-ball

of ε radius and the usual [0, 1] range for image pixels), α
is the size of the gradient step and L(·) is the cost function
with respect to which optimization is performed. For the
first iteration, x0 is perturbed with random noise of magni-
tude ε and projected back into X , as customary in previous
works [14, 24]. In our method, we use PGD to maximize
both the L1 and perceptual (Lpercep) losses of the genera-
tor. Furthermore, including adversarial attacks within the
SR framework requires significantly more ingenuity than
just replacing the loss function. Specifically, besides set-
ting an objective function for the target module, designing
adversarial attacks during training requires defining (i) how
to maximize such objective, (ii) the constraints to maximize
the optimization variables, and (iii) when/where to intro-
duce adversarial examples.

3.2. Robust Training on Super-Resolution

The underlying idea of robust training is to continually
include adversarial examples during the training stage of the
model. Our Robust Super-Resolution (RSR) model extends
this idea to SR through three main steps. Firstly, we imple-
ment a GAN-based model for SR that is previously trained
on clean LR images. Secondly, we employ the trained gen-
erator to create adversarial examples through a noise opti-
mization process (Fig. 3). Finally, we use the adversarial
examples as LR inputs to further train the GAN robustly
(Fig. 2b).

GAN-based model. We build upon ESRGAN [48, 47],
a GAN-based approach to SR [13]. The Generator (G) is
built upon the RRDBNet architecture [25] with Residual-
in-Residual Dense Blocks to improve the enhanced image’s
quality. G optimizes three losses: (i) the L1 loss to evaluate
the pixel distance of the super-resolved image and the HR,
(ii) the Lpercep [19] which is calculated as the distance of
activation features of a pre-trained network between super-
resolved and HR images, (iii) and the term of the adversarial

1858



loss for the generator LGAN
G . L1 and Lpercep are minimized

to reduce the distance between the SR and HR images. The
objective function for G is:

LG = L1 + Lpercep + LGAN
G . (3)

The Discriminator (D) is based on a VGG-128 archi-
tecture and follows the same principle as in Relativistic
GAN [20], which estimates the probability that a real im-
age is more realistic than a fake image. During the first
stage of our method, we use an ESRGAN model pre-trained
on clean images, i.e., the model can super-resolve clean im-
ages at this stage but it is not robust to any type of noise.

Noise Optimization. We use the pre-trained network G
as the starting point for our noise optimization process. Our
goal is to find the optimal input noise that, when added to a
LR image, results in a deficient super-resolved image. This
process allows us to identify the generator’s weaknesses in
handling inputs with different types of corruption. Fig. 3
depicts our optimization process. We freeze the weights
of G during this stage and create the adversarial examples
based on the L1 and Lpercep losses. We add an ε-constraint
random noise to the LR input image to retrieve an adver-
sarial example. Then, we optimize the noise through PGD
(Eq. 2). We iteratively update the input adversarial noise by
considering the contribution of both losses and produce the
adversarial example as follows:

IadvLRt+1
= ILRt

+α sign
(
∇ILRt

(
L1(G(ILRt

), IHR)

+Lpercep(G(ILRt
), IHR)

))
.

(4)

The noise on real-world images tends to be grouped in
multiple pixels, so we take inspiration from [10] to design
structured noise by changing the input scale. To train our
model, we start the optimization process with a syntheti-
cally grouped structure to better simulate real-world cor-
ruptions. Nevertheless, during the optimization iterations
of the attack, we no longer control the structure of the noise
as it changes according to the steps of the gradient. Please
refer to the supplementary material for additional analysis
regarding the noise structure.

RSR Training. We use the adversarial examples created
during the optimization stage as LR input to train the GAN
further. Since the new inputs are specifically optimized to
exploit the weaknesses ofG, using them during training en-
sures that the network learns to super-resolve noisy images.
Furthermore, since the optimized noise does not follow a
pre-defined distribution, the network must generalize to dif-
ferent types of noise. The noise optimization and training
stages are performed interspersed throughout the training
iterations. Thus, as the training process of the network pro-
gresses, the examples that the network considers as adver-
sarial are more potent after each new iteration. This process,

in turn, makes the network more robust against increasing
degradation in every new iteration.

4. Experimental setup
4.1. Datasets

Training. The DIV2K dataset [1, 45] is one of the
widely used benchmarks for traditional SR. The training set
contains 800 2K resolution images and their corresponding
LR images, obtained using a bicubic downgrading operator.
These images do not include any simulated or real noise,
and we use them as the basis for our robust training. For
memory-saving purposes during training, we crop the im-
ages into 480× 480 sub-images.

Reference validation. We validate our framework over
the validation datasets from the NTIRE 2020 Challenge on
Real-World Image Super-Resolution [29] track 1, and the
AIM 2019 Real World Super-Resolution Challenge [30]
track 2. The LR images in each dataset include a different
degradation obtained with an undisclosed artificial operator,
resembling thus realistic corruptions and artifacts. The val-
idation set is composed of the artificially degraded version
of the 100 LR images from the DIV2K validation set and
their corresponding HR ground-truth to calculate reference-
based metrics. Since both datasets include synthetic corrup-
tions, we refer to them as NTIREsyn and AIMsyn.

Non-reference validation. We also validate the perfor-
mance of our method on real-world datasets that do not have
a ground-truth HR for reference. We use the validation set
of the DPED [17] dataset that contains real-world images
taken by an iPhone3 camera. This dataset represents a more
challenging framework because the data contains noise, dif-
ferences in lighting, and other low-quality artifacts. Fur-
thermore, we evaluate our method on real-world faces from
the WIDER FACE dataset [51], initially designed for facial
detection in-the-wild. We randomly sample 100 cropped
faces of medium size with no occlusions. We refer to these
datasets as DPEDrw and FACESrw.

4.2. Evaluation metrics

As it is well known that pixel-wise metrics (e.g., PSNR)
do not correlate well with human perception, the metric we
focus on is the Learned Perceptual Image Patch Similar-
ity (LPIPS) [57]. This metric is based on the comparison
between features of a neural network, in this case, a pre-
trained AlexNet [23] model, and it measures the distance
in perceptual quality between the generated image and the
ground truth. We also report the Peak Signal-to-Noise Ratio
(PSNR) measured in decibels (dB) and Structural Similar-
ity Index (SSIM) to evaluate the pixel-wise fidelity of the
result with the ground-truth HR image. For the datasets that
do not include ground-truth HR images, we use the non-
reference image quality metrics: Perception-based Image
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ε Iters Noise structure Loss PSNR↑ SSIM↑ LPIPS↓
NTIREsyn AIMsyn Avg NTIREsyn AIMsyn Avg NTIREsyn AIMsyn Avg

14/255 2 1.5 L1 + Lpercep 24.31 21.99 23.15 0.65 0.60 0.62 0.23 0.37 0.30
14/255 2 1.5 L1 25.62 22.47 24.04 0.68 0.63 0.65 0.30 0.40 0.35
14/255 2 1.5 Lpercep 24.20 22.07 23.13 0.64 0.61 0.63 0.24 0.38 0.31
10/255 2 1.5 L1 + Lpercep 23.16 21.84 22.50 0.56 0.59 0.58 0.31 0.37 0.34
12/255 2 1.5 L1 + Lpercep 23.68 21.74 22.71 0.62 0.59 0.60 0.25 0.37 0.31
16/255 2 1.5 L1 + Lpercep 23.84 22.06 22.95 0.63 0.62 0.62 0.25 0.38 0.31
18/255 2 1.5 L1 + Lpercep 24.02 21.89 22.96 0.64 0.61 0.62 0.25 0.38 0.31
14/255 4 1.5 L1 + Lpercep 24.13 22.04 23.09 0.65 0.61 0.63 0.26 0.38 0.32
14/255 6 1.5 L1 + Lpercep 24.00 21.73 22.86 0.63 0.60 0.62 0.27 0.37 0.32
14/255 8 1.5 L1 + Lpercep 23.94 21.56 22.75 0.63 0.58 0.61 0.27 0.36 0.32
14/255 2 1 L1 + Lpercep 25.58 22.20 23.89 0.70 0.63 0.67 0.24 0.38 0.31
14/255 2 2 L1 + Lpercep 19.99 21.40 20.69 0.32 0.54 0.43 0.54 0.41 0.47

Table 1. Ablation Study. Performance comparison of varying the hyper-parameters for the noise optimization stage of our method. ε
denotes the maximum pixel intensity perturbation of the noise. Iters denotes the number iterations used to find the adversarial example.
Noise structure denotes how grouped the initial noise values are. Loss indicates which loss function was set as objective for the noise
optimization process. Red and blue colors highlight the best two scores. The hyper-parameters we use for our RSR model are in bold.

Quality Evaluator (PIQE) [46], Naturalness Image Qual-
ity Evaluator (NIQE) [36], and Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) [35]. We provide
further validation in the supplementary material.

4.3. Implementation details

Robust training. We retrieve the adversarial examples
using PGD with parameter values ε = 14/255, iterations =
2, structured noise = 1.5×. The ablation experiments for
each of these parameters are presented in section 5.1. We
initialize training with the pre-trained weights of ESRGAN
on DIV2K. Then, we perform our robust training on two
NVIDIA QUADRO RTX 800 GPUs for 18k iterations with
an initial learning rate of 1e−4, 16 images per batch, and
use an Adam optimizer with β1 = 0.9 and β2 = 0.99.

Comparison with State-of-the-Art. We compare our
method against ESRGAN [48] to establish a baseline
against SISR models. We extend the ESRGAN framework
for 18k iterations over the DIV2K dataset for a fair com-
parison. Furthermore, we compare our results against the
best-performing method of the NTIRE20 and AIM19 chal-
lenges: Impressionism [18] and ESRGAN-FS [12], respec-
tively. For Impressionism, we use the provided pre-trained
weights for NTIREsyn and DPEDrw, and for ESRGAN-
FS, we use their weights for AIMsyn and DPEDrw. For
a complete comparison in every dataset, we train the avail-
able code of Impressionism in AIMsyn and ESRGAN-FS
in NTIREsyn, using default parameters in their official pub-
lic repositories. All our experiments are done considering a
scaling factor of 4×.

5. Results and Discussion

This section analyzes the quantitative and qualitative re-
sults obtained by our method, and we perform a thorough
comparison with the state-of-the-art methods.

5.1. Ablation study

Robust training relies on the preservation of the percep-
tual and semantic information of the original image. Creat-
ing hard examples for the network that are unrealistic com-
pared to the training dataset would confuse the network
rather than help encourage adversarial robustness. Thus,
we have to find a trade-off between how hard the example
is and how realistic it is. In Table 1, we present an extensive
validation of the effect of each hyper-parameter to demon-
strate that our final method uses the optimal one. Since our
method aims to improve the perceptual quality, we focus
mainly on LPIPS and report PSNR and SSIM as comple-
mentary metrics. Please refer to the supplementary material
for qualitative visualizations and a more in-depth analysis
of the different hyper-parameters.

Choosing the right loss function to optimize is crucial
because it directs the robust training towards creating hard
examples for a part of the network. Using only the L1 loss
for robust adversarial optimization improves the pixel-wise
metrics. This result is expected because we are specifically
training the network to be more precise in a pixel-wise com-
parison. However, the perceptual quality is affected. In the
same way, optimizing only the perceptual loss improves the
LPIPS compared to the previous experiment. Nevertheless,
when we use both losses, we are able to improve the average
perceptual performance further.
ε constrains the magnitude of the perturbation in the ad-

versarial example. Larger values of ε result in larger per-
turbations as it allows the noise to be in a higher range,
thus modifying the input more. Table 1 shows that perform-
ing smaller modifications to the input, i.e., having a smaller
ε, greatly affects the mean LPIPS. However, the perceptual
quality remains virtually the same when ε is large enough.

Regarding the iterative nature of the attack, increasing
the number of iterations leads to a worse result in every
dimension of the evaluation. This result suggests that an

1860



Input GT
Impressionism ESRGAN-FS ESRGAN RSR

NTIREsyn AIMsyn DIV2K DIV2KDPEDsyn NTIREsyn AIMsyn DPEDsyn

N
T
IR
E
s
y
n

A
IM

s
y
n

N
T
IR
E
s
y
n

A
IM

s
y
n

N
T
IR
E
s
y
n

A
IM

s
y
n

LR (Ours)

Figure 4. Qualitative results on Synthetic Images. Comparison between our method and state-of-the-art methods, for two synthetic
corruption datasets: NTIREsyn and AIMsyn. For reference, we show the bicubically upsampled input, the result of a supervised SISR
method (ESRGAN [48]), and the ground-truth (GT). Blue frames denote training and validation on the same dataset. Red frames denote
training and validation on different datasets. Green frames denote our method.

adversarial attack with two iterations is strong enough to
impact the SR model positively.

Finally, the scale of the structured noise determines how
grouped the initial noise is. Using a value of 1 means that
every noisy pixel of the LR image has a different value. Ta-
ble 1 shows that a structured noise of 1 performs well for
PSNR and SSIM but slightly worse for LPIPS. This phe-
nomenon is the same that we find on the weakest ε modi-
fication. In contrast, the results suggest that using a value
of 2 in the structure scale creates adversarial examples that
are too different from the original input, so the network can
not effectively use them for training. We find that the best
trade-off is achieved with a structure scale of 1.5.

Effect of robust training. Table 2 shows that ESRGAN
achieves the worst LPIPS for both NTIREsyn and AIMsyn.
This behavior could result from training the model on clean
images, depriving the model of seeing any corruptions like
those present on the datasets. In contrast, RSR outperforms
ESRGAN for every metric and has an average LPIPS 0.35
points lower. These results are visually confirmed in Fig. 4.
ESRGAN magnifies the input noise of every image while
RSR removes it. Since we use ESRGAN as our baseline,
the only difference between that model and ours is that we
perform robust training. Thus, even though we train with a

clean dataset, the invariance to noise enforced during robust
training significantly improves the generalization capacity
of the model when evaluated on corrupt datasets.

5.2. Real-World Synthetic Datasets

The winners of the two recent real-world SR challenges
employ noise-specific models, i.e., different models de-
pending on the type of corruption. To compute their gen-
eralization capabilities, in Table 2, we evaluate each spe-
cialized model on both synthetic datasets NTIREsyn and
AIMsyn and rank them by their average performance. State-
of-the-art models perform well on the dataset they were
trained on but have lower performance on unseen corrup-
tion statistics. Given that we use a single model and it is
not statistically-dependent on the type of artifacts, our gen-
eralization capabilities are considerably better than those
of previous works. Fig. 4 further reinforces this notion by
showing the artifacts that state-of-the-art models create on
unseen datasets (red frames on the Fig.). See the supple-
mentary material for an in-depth study of the type of arti-
facts that each training dataset enforces. In comparison, we
have a single robust model that achieves the best LPIPS for
both unseen datasets and successfully removes input noise
without creating artifacts.
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Table 2. Quantitative comparison on Synthetic
Images. We report the comparison of reference
metrics between our method and the state-of-the-
art methods in different datasets. ↑ and ↓ indicate
higher is better and lower is better, respectively.
Red and blue colors highlight the best two scores.
Bold represents the best method for LPIPS metric.

Method Training
Dataset

PSNR↑ SSIM↑ LPIPS↓
NTIREsyn AIMsyn Avg NTIREsyn AIMsyn Avg NTIREsyn AIMsyn Avg

Bicubic - 25.51 22.35 23.93 0.67 0.62 0.65 0.63 0.68 0.66

Impressionism [18]
NTIREsyn 24.82 21.47 23.15 0.66 0.54 0.60 0.23 0.52 0.37
AIMsyn 19.65 21.89 20.77 0.29 0.60 0.45 0.67 0.41 0.54
DPEDrw 17.53 18.84 18.18 0.34 0.49 0.41 0.60 0.47 0.53

ESRGAN-FS [12]
NTIREsyn 24.59 22.07 23.33 0.69 0.63 0.66 0.25 0.47 0.36
AIMsyn 19.56 20.82 20.19 0.31 0.51 0.41 0.56 0.39 0.48
DPEDrw 17.79 20.15 18.97 0.34 0.53 0.43 0.51 0.47 0.49

ESRGAN [48] DIV2K 20.59 21.48 21.03 0.43 0.56 0.49 0.68 0.53 0.60
RSR (Ours) DIV2K 24.31 21.99 23.15 0.65 0.60 0.62 0.23 0.37 0.30

Input
Impressionism ESRGAN-FS ESRGAN RSR

NTIREsyn AIMsyn DIV2KDPEDrw DIV2K

D
P
E
D
rw

F
A
C
E
S
rw

NTIREsyn AIMsyn DPEDrw
LR (Ours)

Figure 5. Qualitative comparison on real-world images. Comparison between our method and state-of-the-art methods, for two real-
world datasets: DPEDrw and FACESrw. Note that these datasets do not have ground-truth. Blue frames denote training and validation on
the same dataset. Red frames denote training and validation on different datasets. Green frames denote our method.

5.3. Real-World Datasets

Fig. 5 shows the output of different methods for
two challenging in-the-wild datasets: DPEDrw [17] and
FACESrw [51]. A traditional SISR method [48] and spe-
cialized real-world models lack removing unseen real-world
noise. Note that Impressionism trained on DPEDrw cre-
ates sharp super-resolved images on the same dataset (blue
frames), but produces less pleasant images with stronger ar-
tifacts in FACESrw. This result suggests that, even with a
real-world noise training, there is no guarantee the model
generalizes well towards images in the wild. Conversely,
our model removes real-world noise from both datasets,
having better performance on input images with clear edges
(e.g., street sign from DPEDrw). Thus, we show that our
single robust model accurately super-resolves unseen syn-
thetic and natural real-world images.

6. Conclusion

In this work, we explore the use of adversarial attacks to
improve the robustness to unseen noise in the task of real-
world SR. We present RSR, a novel SR method that lever-
ages robust adversarial examples to create photo-realistic
HR images regardless of the LR input noise. We evaluate
our method on synthetic and natural real-world SR datasets.
By using a single robust model trained only with a clean
dataset, we outperform current state-of-the-art methods re-
quiring specialized models for each type of corruption. Fur-
thermore, we provide theoretical insights on how to adapt
adversarial attacks for the particular needs of real-world SR
models. We expect our work to catalyze further study of
the fruitful relationship between adversarial robustness and
real-world SR.
Acknowledgements: We thank Guillaume Jeanneret for in-
sightful discussions on the subject.
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