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Abstract

The DeepFakes, which are the facial manipulation tech-
niques, is the emerging threat to digital society. Various
DeepFake detection methods and datasets are proposed for
detecting such data, especially for face-swapping. How-
ever, recent researches less consider facial animation, which
is also important in the DeepFake attack side. It tries to
animate a face image with actions provided by a driving
video, which also leads to a concern about the security of
recent payment systems that reply on liveness detection to
authenticate real users via recognising a sequence of user
facial actions. However, our experiments show that the ex-
isted datasets are not sufficient to develop reliable detection
methods. While the current liveness detector cannot defend
such videos as the attack. As a response, we propose a new
human face animation dataset, called DeepFake MNIST+1,
generated by a SOTA image animation generator. It includes
10,000 facial animation videos in ten different actions, which
can spoof the recent liveness detectors. A baseline detec-
tion method and a comprehensive analysis of the method
is also included in this paper. In addition, we analyze the
proposed dataset’s properties and reveal the difficulty and
importance of detecting animation datasets under different
types of motion and compression quality.

1. Introduction

DeepFake2 has become a critical topic for our digital
society. With DeepFake, we can now easily change the
identity or expression of the face in an image or a piece
of video with another person’s identity or expression. The
mainstream DeepFake techniques are based on Deep Neural
Networks (DNNs), especially Generative Adversarial Net-
works (GANs) [17], to produce visually plausible images or
videos which are hard to be discriminated by humans. There
is growing concern about DeepFake, as malicious people
could use the techniques to palm off the victims and illude
presence and activities, even if they never did before.

A number of DeepFake methods have been developed

1https://github.com/huangjiadidi/DeepFakeMnist
2DeepFake not only indicates the facial modification methods but also

is the name of one algorithm called deepfake [5].

to manipulate the attributes of human face in images or
videos. For example, the swapping methods [6, 5, 4, 8, 3, 24]
mostly focus on the identity of the face and try to replace
the face in one image/video with the face from others. The
deepfake method [5], a famous swapping algorithm, trains
identity-dependent two auto-encoders to swap the faces of
two identities. Besides face identity, many other face at-
tributes have been studied in the literature. For example,
[33, 32] modified the expression in one face image/video,
and facial image animation [11, 36, 30, 31, 12], as a com-
pose of expression manipulation, is increasingly being im-
portant within the DeepFakes. Given a face source image
and the driving video, DeepFake can now generate a new
video where the source face performs the same action as
the driving video. For instance, Siarohin et al. [30] use an
encoder to capture optical flow information from the videos,
embedding the information with source images, and generate
videos. Zakharov et al. [38] pass the identity embedding to
the image generator to produce manipulated face with the
given landmark. Burkov [12] extracts the identity and pose
information separately and generate videos with embedding.

Given the growing anxiety on the high-quality generation
by DeepFake and its potential negative social impacts, it
becomes especially urgent to study the defense techniques
against DeepFake. Recently a few datasets have been created
for the study of DeepFake detection methods. UADFV [37]
and Celeb-DF [26] collect youtube videos to generate face-
swapping videos, and DFDC [16] captures 48,190 videos
with paid actors and generates a large scale swapping dataset
with over 104,500 videos. By analyzing these datasets,
Rossler et al. [29] and Seferbekov [7] suggested the impor-
tance of CNN architectures on detecting the swapped faces.
Li et al. [25] further found the manipulate boundary between
the face and head can be an effective clue for the detection.
However, all these works are mostly about detecting the face
identity change, which is a limitation of existing deepfake
datasets. There is rare dataset or deepfake detection work
about facial animation, though it occupies a significant part
in DeepFake attack side.

Recently, facial animation by DeepFake has been de-
ployed on mobile devices, producing a large number of fake
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videos and broadcasts through the Internet [1]. These fake
videos thus challenge the security of many intelligent sys-
tems in our daily life. For example, the face recognition
based payment systems usually rely on liveness detection to
verify whether users are the real people by requiring them
to do a sequence of specific actions in videos. However, our
experiments show that DeepFake detectors trained on exist-
ing deepfake datasets consisting of face identity changes are
not applicable for detecting facial animation videos. Further,
we observe that the SOTA liveness detector in public can-
not defend the animation data with specific actions as they
claimed.

In this paper, we propose a new dataset, called DeepFake
MNIST+, a human face animation video dataset. The Deep-
Fake MNIST+ dataset is developed as a response to the wide
use of the MNIST dataset, but for a different deepfake de-
tection problem. We create this dataset to provide the basis
for learning and practicing how to develop, evaluate, and
use deep neural networks for fake face animation detection.
The dataset contains 10,000 face animation videos in ten
different actions, plus 10,000 real face videos to enable a
supervised detector training. These fake facial animation
are of higher fidelity and able to spoof the popular liveness
detectors on the market (as of the time of this manuscript
submission). Given the gap of different deepfake types, the
detectors trained on existing DeepFake datasets with face
identity change cannot well detect fake animations in the
proposed dataset. We establish deepfake detection baselines
on the DeepFake MNIST+ dataset and carefully evaluate
their performance in different scenarios.

We also present comprehensive analysis related to the
properties of proposed dataset. We explore the impact of
motion type and compression quality of generated videos.
As observed from Figure 5, the actions with large movements
will challenge existing detectors. But by taking these difficult
DeepFake data into account, the learned detector can enjoy
a much better generalization across other types of DeepFake
data. The relevant discussion and empirical studies in this
paper therefore shed new light on both DeepFake generation
and detection research.

2. Related Works

2.1. Image Animation

The interest in facial manipulation methods has rapidly
increased recently. One approach for manipulation is based
on 3D modeling. Zollhofer et al., [41] build a 3D morphable
model for the source face, to perform realistic animation
for given actions. Suwajanakorn [31] attempt to model
lip to forgery talking. The deepfake [5] introduce a DNN
based face-swapping method, replacing faces within two
identities with two encoders. Although it requires plenty of
videos/images of both identities to achieve better results, the

promising results show the potential of manipulation with
DNNs. The recent researches focus on identity-independent
swapping methods. Li et al. [24] implement two encoders to
extract attribution and identity information and embed them
in GAN to generate high fidelity swapped results. Several
DNN based expression manipulation and animation are also
proposed. Thies et al. [32] consider facial reenactment as
a domain transfer problem using Pix2Pix architecture [22]
to produce results. Siarohin et al. [30] extract the motion
information of driving videos with optimal flow estimation
to generate high-quality animation results.

2.2. DeepFake and Liveness Detection

An increasing number of DeepFake detection methods are
proposed as a response to the huge concern from society. The
approaches could be separated into three categories. The first
type is trying to detect the unnatural section of the manipu-
lated videos, such as swapping boundary [25], inconsistent
head angles between the face and head [37]. The second type
detects the synthesis signal of GAN to distinguish DeepFake
data. For instance, Wang et al. [34] observe GAN signatures
using discrete cosine transform for detecting CNN-based
DeepFake samples. The last categories’ approaches rely
on DeepFake dataset to train the detectors [29, 7, 18, 28],
regardless of the inconsistent or signals.

On the other hand, the recent liveness detector mainly
defending the psychical level attacks called Replay Attacks.
For instance, attackers could build a 3D mask of victims
through a 3D printer or print out victims’ face in the paper
and wear it. To defense against such attacks, many detection
methods have been proposed. Some approaches try to detect
the differences between real faces and forgery faces. De
et.al., [14] estimate the invariant of facial points for detec-
tion. Komulainen [23] believe detecting faces’ dynamic
muscle change can distinguish the spoofing. Wang et al.,
[35] detect the blood flow change under the skin to separate
facial mask and real face. The recent payment or identity ver-
ification solutions with smartpohone usually combine pose
verification with liveness detection, such as Alipay. They
usually require users to do some specific action, such as
blinking or yawing, to improve the performance. However,
our experiments show that the facial animation data with
specific actions could spoof the SOTA liveness detectors in
the market.

2.3. DeepFake Datasets

A few DeepFake datasets have been proposed recently
as a response to the increasing concerns on DeepFake tech-
niques as they can generate realistic results to spoof people.
However, most of the datasets are generated using identity
swapping algorithms, but only a few works for facial anima-
tion. Table 1 shows the details of these DeepFake datasets.

Celeb-DF [26]: The Celeb-DF is a large face swap
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dataset. It selects 590 real videos from Youtube, which
all about the talking videos of celebrities. The dataset con-
tains 5,639 synthesis videos using a high-resolution face
generator.

DFDC [16] : The Facebook DeepFake detection chal-
lenge dataset is one of the largest face-swapping video
dataset recently. It contains 104,500 face swap videos based
on 48,190 source videos shot with 3,426 paid actors in dif-
ferent locations and light conditions.

FF++ [29]: The FaceForensics++ dataset is one of the
popular DeepFake datasets. The autoher use multiple Deep-
Fake methods to generate the dataset. The dataset to provide
the data generated by expression manipulation, the related
techniques with facial animation. Two manipulation meth-
ods, Face2Face [33] and NeuralTextures [32], are imple-
mented to generated DeepFake videos, while the two face-
swapping methods [6, 5] are also included. The dataset uses
1,000 real videos from Youtube to generate 1,000 DeepFake
videos for each method.

the proposed dataset is a contemporaneous work with
Forgerynet [21]. Our proposed dataset has several differ-
ences comparing with it: i) the proposed dataset includes
animation data under ten specific categories (e.g., head move-
ment and emotion changes), rather than applying the un-
known action from a random video; ii) we boost the quality
and challenge of the proposed dataset by filtering the gen-
eration with liveness detection; and iii) we present a com-
prehensive analysis about the proposed dataset, including
action categories and video quality.

According to Table 1, the only dataset involving the face
animation is FF++, which is a small dataset and is hard to
cover the challenging deepfake data in the real world. We
argue that the face animations in a deepfake dataset should
be diverse enough and are better to cover the animation
categories in the prospective downstream tasks, instead of
the just causal talking in FF++. For example, the liveness
detectors often require specific actions or expressions of the
face as the input. For these reasons, it engages us to propose
a large-scale and action-specific facial animation dataset.

#real #fake
type(s) of
generation

action
specific

UADFV [37] 49 49 face swap No

Celeb-DF [26] 590 5,639 face swap No

DFDC [16] 48,190 104,500 face swap No

FF++ [29] 1000 4000 animation & swap No

ForgeryNet [21] 91,630 121,617 animation & swap No

DeepFake
MNIST+ 10,000 10,000 image animation Yes

Table 1: Basic information of existing DeepFake datasets.

Figure 1: Facial animation video samples for different ac-
tions.

3. DeepFake MNIST+

The major contribution of this paper is our proposed hu-
man face animation video dataset, called DeepFake MNIST+.
It includes 10,000 face animation videos performing ten dif-
ferent actions and 10,000 real human face videos selected
from other datasets. Besides, all these animation videos can
spoof the liveness detection solution in the market. Such
that the videos are still challenging recent public detectors.
It is the first large-scale dataset for face animation videos
of variant actions to the best of our knowledge. We believe
such a dataset allows us to train advanced detection mod-
els to distinguish the face animation videos for preventing
spoofing.

3.1. Generation Model and Data Preparation

We select Siarohin’s framework [30] to generate face
animation videos. This SOTA animation framework taking
as input a source identity face image and a driving video
shot by another actor. The model performs local affine trans-
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formations using first-order Taylor expansion to estimate the
motion of the driving video. Then applying the motion fea-
tures to the generator to provide high-quality face animation
videos. As a result, it generates a video that animates the
motion of driving video while keeping the identities of the
source image. For more detail, please review the original
paper. The major advantage of this framework is that the
model is not identity-dependent. We can generate different
videos for variant identities with arbitrary driving in the one
trained model, while it only requires one image as the source
image.

For the source identity images, we select the frames from
video in VoxCeleb1 dataset [27]. VoxCeleb1 is a large-
scale audio-visual dataset of human speech. It includes 1251
unique celebrities in 22,496 talking videos. All videos are
face-cropped and have size 256x256 resolution. During
our experiments, using the front face source images could
achieve better generation quality. Therefore, we select the
face frames mostly facing the front from the VoxCeleb1
dataset as our source images for generation.

The DeepFake MNIST+ dataset contains forgery videos
in 10 actions. It includes: Blink, Open mouth, Yaw, Nod,
Right slope head, Left slope head, Look up and smile, sur-
prise and embarrassment. The driving videos of embarrass-
ment are collected from ADFES dataset [19]. The dataset
contains variant emotional expression videos (anger, disgust,
fear, joy, sadness, surprise, contempt, pride and are shot by
22 actors. We select five actors’ embarrass videos from the
dataset as our driving video. The videos of the remaining
actions are shot by one volunteer. The action videos are
captured using a front camera of the iPhone 11 Pro, and
each action has been executed by the volunteer for 5 times.
All the driving videos are face cropped by using MTCNN
modules [39] and resized into 256x256 resolution to align
the format of the VoxCeleb1 dataset.

3.2. Generating High-Quality Facial Animations

We adopt two public liveness detection APIs to select the
challenging samples that cannot be accurately recognized
by the detector. The first one was provided by Tianyan-
Data [9]. TianyanData’s API supports liveness detection
with a specific action, including blinking, yawing, nodding,
and opening mouth. In order to pass the detection, the input
face video has to perform a particular action while passing
the spoofing test. The second one comes from Baidu [2].
Their detector supports universal liveness detection regard-
less of actions. Both of these two companies claim their
detector can achieve 99% accuracy for detecting spoofing.

We generate many animation videos for all actions and
then pass the data to the liveness detection APIs to pick out
the samples that are challenging for the liveness detector.
As a result, the DeepFake MNIST+ dataset contains 10,000
face animation videos in 10 specific actions and 10,000

real face videos collected from VoxCeleb1. Each action
includes 1,000 videos, and all of them can spoof the APIs.
For blinking, yawing, nodding, and opening mouth, we use
both TianyanData and Baidu APIs to filter videos. For the
remaining actions, we use Baidu’s API to collect spoofed
data. The following graph presents each action’s spoof rate
by passing the animation videos to the two APIs.

The actions of blinking, yawing, nodding and opening
mouth have lower average spoofing rates than others, such
the situation could be caused by two APIs filter the videos of
those actions. In addition, the TianyanData’s API requires
further action detection, which reduces the chance to attack.
On the other hand, the actions that require large-angle head
movement, e.g., yawing and nodding, the success spoofing
rates are much lower than the other actions that don’t need
a significant motion change. One reasonable explanation
could be that a single source image of the frontal face cannot
provide sufficient detail of all head information, e.g., profile
face, leading to lower head movement quality. The videos
of simile have the highest spoofing rate, which has achieved
61%. It might because the smile action doesn’t lead to
significant head change, making it hard to detect the spoofing
details. While the yaw videos are more likely to be detected,
that has a 23% successful rate only.

DeepFake Mnist+ deepfake NeuralTextures Face2Face

original accuracy 96.58% 99.7% 99.2% 98.9%

accuracy on DM+ - 43.7% 63.6% 67.5%

fine-tuning 95.3% 98.46% 98.1% 98.49%

Table 2: The performance of Resnet50 models trained with
existed datasets from FF++ [29] to detect our proposed
dataset. And the performance of DeepFake Mnist+ trained
model, fine-tuning with FF++ data, to detect all these datsets.

In addition, we explore the transferability of the detec-
tor trained with existing datasets. We train Resnet50 [20]
models with the data of deepfake [5], Face2Face [33] and
NeuralTextures [32] provided by FF++ [29] and present the
result for detecting DeepFake Mnist+. The first one is the
face-swapping data. The last two are the expression manip-
ulation dataset. The Table 2 presents the result. All these
three models are trained with raw quality and achieve nearly
100% accuracy in their own dataset. The result shows that
the face-swapping detector fails to distinguish our proposed
dataset. It seems better in manipulation datasets but still
has a huge gap compared with the performance in their own
datasets. Furthermore, we fine-tune the DeepFake Mnist+
trained model with the three FF++ datasets. The result in-
dicates that the model can gain the power to detect both
animation data and other Deepfake data by using our pro-
posed dataset with other data sets.

Based on the these results, we believe the current detec-
tors still cannot defend against such attacks. These obser-
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vations engage us to proposed a face animation dataset to
improve the detectors and achieve better security.

Figure 2: The spoofing successful rates for different actions.
The first four actions’ videos are detected by TianyanData [9]
and Baidu [2] API, while the later six actions’ videos are
detected by Baidu API.

4. Benchmark Systems
We proposed a simple detection pipeline to detect the

forgery videos in our dataset and distinguish them from those
real videos. The forgery detection can be formulated as a
binary classification task. We take the 10,000 real videos
in the dataset as positive, while those forgery videos as
negative.

In practice, the videos are usually suffering compres-
sion before uploading to the Internet, or the video might be
shot by poor camera equipment, which suffering low video
quality. Different compression rates are considered in our
experiment to simulate the realistic detecting setting under
different video qualities. We select two different compres-
sion rates - C23 and C40 under H.264 codec to compress
the videos. To be mentioned that, a higher compression rate
indicates worse video quality.

We exploited multiple models to accomplish the Deep-
Fake detection task in our experiment:

MesoInception-4: MesoInception [10] is a CNN model
consisting of two inception modules inspired by Inception-
Net [10]. The model uses mean squared error between true
and predicted labels rather than the ordinary cross-entropy
loss. Following the training procedure in [29], we extracted
the frames as the original size which is 256x256 resolution.

XceptionNet: The XceptionNet [13] is a traditional CNN
model based on separable convolutions with residual con-
nections. The model has shown high accuracy when detect-
ing deepfake [5] videos and has been the baseline model
introduced by Rossler et al. [29]. We used a pre-trained
model on the ImageNet [15] dataset in this experiment. The
CNN layers are frozen, and we only update the weights of
newly inserted full connected layers for the prediction. Same
with MesoInception, we also used the 256x256 resolution of
frames as the input.

Resnet: The Residual Neural network (Resnet) [20] is
one of the most popular neural networks. It utilizes skip con-
nections or shortcuts to jump over some network layers, such
that the networks are easier to be optimized even with the
increasing depth. The Resnet networks are also pre-trained
with ImageNet [15]. Three versions of Resnet - Resnet50,
Resnet101, and Resent152 are included in the experiment
to explore the performance change under different network
depths. For all versions of Resnet, we capture and resize the
image frames into 224x244 resolution.

All CNN models are trained with Adam optimizer with
an initial learning rate of 0.0002, and we set β1 = 0.999 and
β2 = 0.9. The learning rate decreases under the poly-decay
schedule. The total number of training epoches for each
model is set as 50, and the batch size is 64. We pick 70%
of videos from the DeepFake MNIST+ as the training data,
that is, 700 videos from each of the ten action categories
and 7000 real videos. 15% videos are the validation data.
The remaining 15% will be the test data. We select the best
versions of models based on the accuracy on the validation
set.

5. Evaluation
This section presents different models’ performance

changes for detecting our proposed face animation video
dataset under different situations. We present different mod-
els’ accuracy for classifying test video data frames as real or
fake ones to show the performance.
5.1. Overall Detection Performance

Table 3 compared the accuracy of different models un-
der three different video compression levels (raw, light and
heavy compression). The result indicates that the Resnet
models have the best performance among all models. They
achieve a 96.3% average accuracy on the raw video dataset,
which is much higher than those of the other two CNN mod-
els. The XceptionNet, that also has a deep architecture, ap-
proaches a 92.38% accuracy for detecting forgery videos. In
addition, the MesoNet shows the poorest performance with
only a 60.39% accuracy for detecting the raw videos. The
increasing of the network depth does not constantly boost
the performance. The accuracy of three Resnet variants are
very similar. It is hard to say, the deeper architectures, e.g.,
Resnet152, show improvement compared to other smaller
models.

The video quality is also an important factor affecting the
performance. Table 3 shows that worse video quality (higher
compression rate) could lead to a performance downgrade.
Compared to the raw dataset, the average accuracy of Resnet
networks decreases around 2% under the light compression
condition. The situation is worse when the videos are un-
der heavy compression. 91.06% of compressed videos are
classified correctly with Resnet networks on average, which
has a 5% gap from that on the raw dataset. The XceptionNet
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Table 3: The accuracy of different classifier models in testing set under different compression rate. The light compression
corresponding to the c23 compression rate, while the heavy compression corresponding to the c40 compression rate. We
select the best version of models based on the validation accuracy during the training process.

Resnet50 Resnet101 Resnet152 XceptionNet MesoNet

raw 96.58% 96.64% 96.18% 92.38% 60.39%
light compression 94.32% 94.87% 94.90% 85.52% 58.58%

heavy compression 91.49% 90.44% 91.27% 83.143% 57.90%

Raw ->LC Raw ->HC LC ->Raw LC ->HC HC ->Raw HC ->LC

Resnet50 85.52% 71.3% 95.16% 82.98% 59% 61.02%
Resnet152 79.23% 68.12% 82.33% 73.60% 76.72% 76.69%
Xception 79.17% 71.83% 87.89% 68.99% 67.38% 62.9%
MesoNet 51.37% 56.92% 57.01% 49.53% 55.65% 58.64%

Table 4: The models’ performances trained by one specific compression rate and detecting the videos from the datasets of the
other two compression rates.

is more sensitive to compression rate than other networks,
whose accuracy drops to 85.52% significantly when applying
light compression and 83.143% for heavy compression.

The decreasing correction rate could be caused by the
loss of detail in low video quality. The compression process
leads to blur frames, hiding the forgery information so that
the detector might not be able to capture such information
for detecting the forgery areas.

5.2. Analysing the Impact of Video Quality

We further explore how the video quality could affect the
performance. The Table 4 shows the models’ generalization
for the videos of different compression rates. It presents
the accuracy of models trained with one quality (e.g., Raw)
and predicts the data with the other two qualities(e.g., light
and heavy compressed). The results indicate that the models
cannot adapt well to datasets with other qualities, especially
between raw and heavy compression datasets. The raw video
models only achieve 70% accuracies on average for heavy
compression videos and 67% conversely. It might show
the heavy compression could change the data distribution
leading to a dramatic accuracy drop. Also, light compression
models have better generalizations than others, indicating the
models could learn animation and compression information
simultaneously.

One way to overcome the impact of different video quality
is to train the network with the videos in all qualities. We
train the Resnet50 and Resnet152 with the mixed video
quality dataset for the experiment. More specifically, we
select the video quality randomly for each sample to train
the models and present their performances in testing sets
under three qualities respectively. The Table 5 shows the
result. With training in mixed quality videos, the models can
adapt to different video qualities. However, it still has a slight

Resnet50 Resnet152 XceptionNet MesoNet

Raw 93.57% 95.78% 90.82% 59.47%
LC 90.69% 92.11% 83.28% 56.94%
HC 85.56% 88.32% 82.43% 55.38%

Table 5: The performances of models trained with mixed
video quality dataset in different testing sets.

accuracy decrease, especially for heavy compression videos.
This change supports our previous observation, which could
have a large difference in distribution between raw and heavy
compressed videos. The result also suggests that it might
require a large model to learn the mixed video quality dataset.
Resnet152, a deeper network, has smaller gaps with the
models trained with a single-quality video set, which has
3% improvement for all qualities compare to the smaller
Resnet50 network.

5.3. Evaluation of the Training Corpus Size

We evaluate how the training corpus size could affect the
detection performance. We select 10000, 3000, 1000, 500,
100, and 10 animation videos and the corresponding number
of real videos to train the Resnet50 model. The animation
videos for each action are selected equally.

The chart on the left of Figure 3 presents the importance
of training corpus size. It could only lead to a small down-
grade in the raw dataset when keeping 10% of the data, but
more impact when the videos are compressed. It could in-
dicate that more low-quality videos are required to train the
models. Besides, correction decreases dramatically if we
use 1% of data for training in all quality. Simultaneously,
the models tend to random guessing when we only have ten
animation videos for training.

In addition, Figure 4 shows performances under different
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proportions of animation and real data for training. More
specifically, we reduce the number of one class’s videos
(either real or animation) to reach the expected proportions
of videos for training. For example, ”1:2 more real videos”
means we remove half of the animation videos for training.
Similar to decrease the total training corpus size, either re-
ducing the real or animation videos will lead to an accuracy
decrease. Also, preserving animation videos for training is
more critical than introducing more real videos. When we
use 10% of animation video for training, the performance
only achieves 85%; a 10% decrease compares to the full
dataset. On the contrary, keeping 10% of real videos with
full animation videos leads to a smaller 5% downgrade.

The chart on the right of Figure 3 presents how the
training corpus size could affect the performance of mod-
els trained with the mixed quality dataset. We trained the
Resnet152 models with 3000, 1000, 500, 100, and 10 ani-
mation videos and the corresponding number of real videos
under mixed video quality. Similar to the models trained with
single quality datasets, a smaller corpus size also reduces
corrections for the mixed quality situation. We also notice
that the performance will slightly lower for large training cor-
pus size than single-quality videos trained models. However,
when the corpus size becomes smaller, the accuracy tends to
be higher than the model trained with single-quality videos,
especially for light compression videos, which suffering the
most impact relate to decreased corpus size. One reason
could be that the mixed video quality training strategy is sim-
ilar to data augmentation, which increases the data diversity
for small training corpus size to improve performance.

Figure 3: The performance changes under different training
corpus sizes using single quality or mixed quality video
dataset.

5.4. Evaluating the Impact of Type of Actions

The type of actions could affect the detection perfor-
mance. We train the models with videos of one single action
and evaluate whether the models could adapt to other unseen
animation videos. For each action, we select all animation
videos of that action and the corresponding number of real
videos (1000 videos for each label) to train the Resnet50
models and test the performance with the whole animation
testing video set. We select the raw quality videos for the
experiment, and Figure 5 shows the result. With the train-
ing of single-action, it is not doubted that models cannot

Figure 4: The detection accuracy of Resnet50 models trained
with raw videos under different proportions of real and ani-
mation videos.

keep similar performance to the one trained with full actions
raw quality videos with 1000 corpus size. The accuracy
drops to 74.3% on average from 93.4%. The videos of nod-
ding and surprising actions provide a better generalization
to adapt unseen actions, which achieve 80.46% and 79.98%
respectively. Right and left slope videos also introduce rela-
tively high performance than remaining actions, which reach
77.02% and 75.89% respectively. On the other hand, the
models trained with smile and blink videos have poor correc-
tion rates, which drop to 67.36% and 69.08%. In summary,
using large movement action videos to train classifiers could
lead to better performance for detecting new actions’ videos.
The actions that only include small changes, e.g., smiling
and blinking, cannot provide sufficient information for the
networks to adapt to unseen videos.

We also compare the full dataset trained models’ per-
formances for detecting different actions under three video
qualities, and Figure 6 shows the result. We can notice that
some actions’ videos are relatively hard to detect in all video
qualities. The left slope videos are the most difficult ones,
which the accuracy is 92.3% under raw videos and drop to
88.24% under heavy compression videos. In addition, the de-
tection of embarrassment videos might require higher video
quality. Its performance decreases to 87.5%, the lowest one
under heavy compression and a huge 7% gap compare to the
one in raw quality. On the other hand, some actions, e.g.,
smiling, blinking, are much easier to be detected with the
networks. They have achieved 100% correctness for raw
videos, decrease to 97% on average if the videos are heavily
compressed, which still keep in a higher level than other
actions.

Comparing with Figure 5, we observe that some hard-
to-detect actions, e.g., right and left slope, could provide
more generalization if we only use those actions’ videos for
training. On the contrary, the models trained with the videos
of easy-to-detect actions, e.g., smiling and blinking, showing
poorer performances for adapting unseen actions.

5.5. Visualizing the Attention Parts of Models

We analyze what the classifier learned for distinguishing
the animation and real videos. More specifically, we try
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Figure 5: The detection accuracy for the Resnet50 models
trained with one specific actions videos. Each label indicates
the model of the whole testing data performance, trained
with the videos of that specific action and 1,000 real videos.

Figure 6: The detection accuracy for each action under differ-
ent video quality. The models are trained with full training
dataset. The original class indicate the selected real videos.

to visualize the network pay attention to which part of the
video frames for detection. We use Class Activation Map
(CAM) [40] to achieve visualization. The CAM is a tech-
nique to visualize what the classifier is looking at. CAM
relies on the output from the models’ global average pool-
ing(GAP) layer, which right after the last convolution layer.
The GAP layer could keep the spatial information of the
convolution layer. By multiplying the weight of the Softmax
layer of one specific class with GAP output, we can visualize
the models’ attention regions for classifying the given input
images as that specific class. Our baseline models are binary
classifiers to separate frames from either real and animation
videos. In this case, the CAM results present semantic infor-
mation about which parts of input image are critical regions
for the models to decide whether it is from the animation
videos.

In our experiment, we visualize the CAM results of the
Resnet50 model trained with raw quality videos. To be
noticed that, the GAP layer has been added to the model
in the original design, so we don’t require to do the further
modification. The Figure 7 demonstrates some CAM results
of selected video frames of different actions. We adapt the
results to the original images to highlight the attention parts.
The red color region indicates the important region, while the
model pays less attention to the blue color areas. The results
indicate that the model could learn semantic information to
detect the animation videos. The model relies on the forgery
regions to make the decision. For the opening mouth video
frames, the model focuses on the detailed information of
mouth. Similarly, the head and neck regions of the frames
could be significant for detecting up videos. And the network
pays attention to the profile face for head movement action’s
video frame, like yawing and sloping.

Figure 7: The Class Activation Map (CAM) results of the
Resnet50 model trained with raw videos.

6. Discussion and Conclusion
We present a new large-scale, action-specified facial an-

imation video dataset - Deepfake Mnist+, and evaluate the
dataset’s detecting performance with the proposed baseline
detection method in different situations. We mainly explore
the impact of the compression and actions on classification
accuracy. It indicates the low-quality videos could signifi-
cantly affect the performance and large movement actions
could provide further generalization for unseen data. We
expect that our proposed dataset could improve the detec-
tion performance of facial animation videos and increase the
robustness and security of the recent liveness detectors as a
response to the concern about pervasive animation videos
online. As future work, we will explore other advanced fa-
cial animation methods and enlarge our datasets with more
actions shot by more actors.
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