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Abstract

Image denoising is a well-known and well studied prob-
lem, commonly targeting a minimization of the mean
squared error (MSE) between the outcome and the origi-
nal image. Unfortunately, especially for severe noise levels,
such Minimum MSE (MMSE) solutions may lead to blurry
output images. In this work we propose a novel stochas-
tic denoising approach that produces viable and high per-
ceptual quality results, while maintaining a small MSE.
Our method employs Langevin dynamics that relies on a
repeated application of any given MMSE denoiser, obtain-
ing the reconstructed image by effectively sampling from the
posterior distribution. Due to its stochasticity, the proposed
algorithm can produce a variety of high-quality outputs for
a given noisy input, all shown to be legitimate denoising
results. In addition, we present an extension of our algo-
rithm for handling the inpainting problem, recovering miss-
ing pixels while removing noise from partially given data.

1. Introduction

This work focuses on the image denoising task, a well-
known and well-studied problem in the field of image pro-
cessing. Various successful algorithms, both classically
oriented and deep learning based, were proposed over the
years for handling this task, such as NLM [13], KSVD [19],
BM3D [17], EPLL [59], WNNM [21], TNRD [16],
DnCNN [53], NLRN [29] and others [52, 36, 4, 45, 25, 54,
42, 44, 26, 57]. Nowadays, supervised deep learning-based
schemes lead the image denoising field, showing state-of-
the-art (SoTA) performance [53, 29, 57].

Common to these and many other algorithms is the fact
that they minimize the expected distance, most notably the
Ly metric, between the original and the reconstructed im-
ages. This approach leads to a minimum mean squared er-
ror (MMSE) estimator. Unfortunately, high performance
in terms of MSE does not necessarily mean good percep-
tual quality [47]. Since denoising is an ill-posed problem
(i.e. a given input may have multiple correct solutions), the
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Figure 1. Top row, left to right: original image, noisy image with
o = 0.406 (pixel values are in the range [0, 1]), the denoised re-
sults using an MMSE denoiser,' and BM3D [17]. Bottom row:
several outputs of our algorithm using the same MMSE denoiser.

MMSE solutions tend to average these possible correct out-
comes. In a high noise scenario, such an averaging strategy
often leads to output images with blurry edges and unclear
fine details. Many alternative distance measures to the MSE
have been suggested, including SSIM [48], MS-SSIM [49],
IFC [38], VIF [37], VSNR [14], and FSIM [55]. However,
changing the distance measure might not solve the prob-
lem. The authors of [8, 9] have shown that there is an in-
herent contradiction between any mean distortion measure
and perceptual quality. Due to this so-called perception-
distortion” trade-off, an image that minimizes the mean dis-
tance in any metric will necessarily suffer from a degrada-
tion in perceptual quality.

What could be the remedy to the above-described prob-
lem? While maintaining the Bayesian point of view, de-
noising could still leverage the posterior distribution of the
unknown image given the measurements, but avoid the av-
eraging effect. Seeking the highest peak of the posterior
distribution or sampling from it, both seem as good strate-
gies for getting high-perceptual quality outcomes.

And indeed, many model-based classically-oriented al-
gorithms seem to have chosen to apply a maximum a pos-
teriori (MAP) estimator instead of MMSE (e.g. [19, 59]).
MAP or closely related prior-based approaches are also ap-

IThe MMSE denoiser used in all our experiments is based on NC-
SNv2 [40]. See subsection 2.2.2 for more details.
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plied more recently in deep learning based methods [43, 20,
7, 58]. However, these methods do not attempt to recover a
highly probable natural-looking solution to the problem, but
rather attempt to leverage a prior assumption on the image
distribution in order to improve MSE performance. This is
evident in the fact that the main evaluation metric for these
methods is almost always peak signal to noise ratio (PSNR).
In fact, many of these methods incorporate certain tech-
niques in addition to MAP estimation, such as early stop-
ping, patch averaging, or extra regularization, all done in
order to achieve better PSNR performance, getting as close
as possible to MMSE performance.

An alternative strategy to MAP is a sampler from
the posterior. Recently, generative adversarial networks
(GANSs) have achieved success in generating realistically
looking images (e.g. [12, 24]), effectively sampling from
the distribution of images. A GAN can serve our denoising
task in one of two ways: either being trained to sample from
the posterior directly, or by inverting its pre-trained genera-
tor. The first path refers to a variant of a conditional GAN,
an approach that encounters difficulties in training, as ex-
posed in [2, 3]. The inversion option is appealing [27, 1],
but relies on an adversarial training, which is usually unsta-
ble, and there are currently no theoretical guarantees that its
results are valid samples from the posterior distribution.

In this paper, we take a completely different approach
towards high perceptual quality denoising that does not rely
on GANs. We draw inspiration from an interesting line of
work reported in [39, 40, 22, 41] that develops an alter-
native method for generating images. The authors of [39]
propose an annealed Langevin dynamics algorithm in order
to sample from the prior image distribution. This requires
knowledge of the (Stein) score function, which is the gra-
dient of the log of the prior. The work in [23] introduces
an extremely valuable link between this score function and
MMSE denoisers, showing how to synthesize images and
solve a special class of inverse problems by leveraging a
given MMSE denoiser.

In our work we propose a novel approach for handling
the image denoising task by building on the above. Our
method produces sharp output images bypassing the typi-
cal denoisers’ blurriness problem. Instead of minimizing
MSE, our stochastic denoiser samples its output from the
posterior distribution given a corrupted image. The pro-
posed algorithm stochastically picks a clean image consis-
tent with the corrupted input one, instead of producing a
single averaged output. Similar ideas arise in recently pub-
lished papers [5, 31], which suggest that methods solving
super resolution should not be deterministic, but rather al-
low for many possible outcomes. In addition, stochastic de-
noising has been suggested in [50], but their method utilizes
a far more complicated posterior sampling, and they use it
for estimating an MMSE denoiser. In contrast, our algo-

rithm samples directly from the posterior, achieving better
perceptual quality.

For implementing sampling from the posterior, we for-
mulate a score function that corresponds to the posterior,
employ an MMSE denoiser to assist in evaluating it, and
harness the annealed Langevin dynamics for drawing sam-
ples from this distribution. For any noisy input image, the
proposed algorithm can produce a variety of viable outputs.
Besides being sharp and natural-looking, images produced
by the proposed stochastic denoiser are close to the MMSE
solution in terms of PSNR, and visually similar to the true
clean image. In fact, our work shows that all reconstructed
images are valid outcomes of the denoising procedure, i.e.
the difference between any pair of noisy and reconstructed
images is statistically fitted to an additive white Gaussian
noise with the appropriate variance.

In addition, we introduce an extension of the stochastic
denoising scheme for solving the noisy inpainting problem,
in which the observed image is incomplete and contami-
nated by noise. As in the denoising case, the inpainting
scheme can produce a variety of valid yet different outputs
for any input image.

Instead of working with a specific model architecture,
our denoising and inpainting schemes utilize any denoiser
trained/designed for minimizing the MSE on a set of noise
levels. Such high-performance denoisers are widely avail-
able due to the incredible advances in image denoising
achieved in the past two decades’>. Thus, our recovery
schemes do not require any specific constraints on the
model architecture or retraining of the MMSE denoiser. The
only requirement is the ability to produce high-PSNR out-
puts for a set of noise levels. To summarize, this paper has
two main contributions:

* We introduce a novel stochastic approach for the im-
age denoising problem that leads to sharp and natural-
looking reconstructions.  Instead of reducing the
restoration error, we propose to pick a probable solu-
tion by effectively sampling from the posterior distri-
bution.

* We present stochastic algorithms for solving both the
image denoising and inpainting problems. For any
corrupted input, these algorithms can produce a wide
range of outputs where each is a possible valid solution
of the problem.

2Indeed, the extremely well-performing MMSE denoisers available to-
day have led researchers to question whether we are nearing the optimal
achievable noise reduction [15, 28].
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2. Proposed Method: Foundations
2.1. Sampling from the prior distribution

One way to generate samples from a probability dis-
tribution p (), is using the Markov Chain Monte Carlo
(MCMC) method with the Langevin transition rule [6, 34]

Tip1 = o + oV logp (z:) + V2az €))

where z; ~ N (0,1) and o some appropriate small con-
stant. The expression V, logp (x) is known as the score
Sfunction [39] and is usually denoted as s (x). The role of
z¢ 1s to allow stochastic sampling, avoiding a collapse to a
maximum of the distribution. Initialized randomly, after a
sufficiently large number of iterations, and under some con-
ditions, this process converges to a sampling from the de-
sired distribution p () [34]. The work reported in [39] ex-
tends the aforementioned algorithm to annealed Langevin
dynamics, which is handy for generating images from the
implied prior distribution p (x). The algorithm proposed
by [39] works as follows: Initialized with a random image,
it follows the direction of the score function in each step, as
in Equation 1. The score function is defined as Vz log p (%)
where Z =z +zand z ~ N (0, a’I ) for different values
of 0. Their method starts by using score functions corre-
sponding to a high o, and gradually lowers it until p (%)
is indistinguishable from the true data prior p (x). This
way, the algorithm flows the initial random image to ones
with a higher prior probability, meaning that the output is a
natural-looking image.

2.2. Sampling from the posterior distribution

We start by formulating our denoising task: Given a
noisy input image y = x + n where & ~ p (z) is the true
clean image and n ~ N (0,031) is a random white Gaus-
sian noise with a known variance, we attempt to recover
2.3 This task might have multiple possible solutions for
x, and we would like to output one of them. While p (z)
is unknown, we assume that we have access to an MMSE
denoiser operating on images from p (x). We propose to
recover x by sampling from the posterior distribution given
the noisy input image, i.e., p (x | y).

Our proposed approach is an adaptation of the annealed
Langevin dynamics algorithm [39] for our aforementioned
task. Annealed Langevin dynamics produces samples from
p(x) by means of the score function Vj;logp () where
i =ux+zand z ~ N (0,02]) for different values of
o. In order to adapt it to our task, we need to estimate the
score function of the posterior Vzlogp (Z | y). Note that
the work reported in [23, 41] formulates score functions for
posteriors for several inverse problems, and samples from

3Throughout this work we consider a Gaussian noise corruption, which
provides a good approximation for many use cases [11].

Figure 2. From top to bottom: original LSUN-tower image, noisy
versions (oo from left to right: 0.198, 0.403, 0.606), MMSE de-
noiser outputs, and instances of our algorithm’s output.

these posteriors using Langevin dynamics. However, the
problems treated are limited to noise free cases.

In the following we derive a formula for obtaining
Vzlogp (& | y), and then present the relation between this
score function and the MMSE denoiser. In section 3 we
present the stochastic denoiser algorithm for sampling from
p (x| y), which is based on the annealed Langevin dynam-
ics algorithm [39]. Section 3 also includes an extension of
our algorithm for handling the inpainting problem.

2.2.1. The score function of the posterior distribution

We fix a sequence of noise levels {ai}f:bl such
that og > o1 > > or > opy1 = 0, where oy is the
noise level in y and o4 is simply zero. We consider the
process of adding white Gaussian noise with standard de-
viation gy to x as a gradual sequence of noise additions
{i"i}le starting from Z 7, down to Zg:

xr, = x+zL
Ir-1 = Tp+z2p-1
Ip—2 = Tp-1+2z2p-2
(2)
1 = To+ 2z
Yy==I9 = I1+ 2

where z; ~ N (0, (67 — 02 ,) I) for0 < i < L. Note
that from the above we conclude that

L
y=& =z+Y 2, 3)
1=0
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where S22 ~ N (0,021), because a sum of indepen-
dent Gaussian random variables is a Gaussian random vari-
able with variance equal to the sum of their variances. This
matches our original definition of y in the denoising task.
We also notice that

i—1
y—.f?i = ZZ]‘, (4)
7=0

where Z;;E 2j ~N (0, (03 —02) ).

In the next calculations, which are valid for every i, we
refer to z; as = for simplicity. We move on to calculate
V3zlogp (& | y) using the Bayes rule,

Vi logp (i | y) = Vs log [(p(ly)) (| @p(g:«)]

= Vs {log (p(ly)) +logp (y | ) +10gp(56)} :

Since y is a fixed observation that does not depend on z, the
gradient of the first term vanishes, resulting in

Vilogp (% |y) = Vzlogp(y | 2) + Vzlogp (). (5)

In order to calculate Vz logp (y | &), we recall Equation 4
and obtain

Vilogp(y | &) = Vzlogpy_x (y— | 7)
= V;log [
Calculating this results in

y—
—_— 6
o2 — o’ ©)

Vilogp(y | #) =
which when combined with Equation 5 gives

Vilogp (# | y) = Valogp (&) + 0—s. (1)
o5 — 0;

The first term is the same one used in [39], while the sec-
ond can be computed easily. Therefore, we have obtained
a tractable method for estimating the score function of the
posterior distribution given the noisy image.

2.2.2. Estimating the score using an MMSE denoiser

A major step forward is provided in [23], exposing the
following intricate and fascinating connection between the
score function and MMSE denoisers:

T (z)—=x

5 ®)

Vilogp () = P

where Z () = E [z | Z] is defined as the MMSE denoiser.
This relation suggests that a network trained to estimate the

Algorithm 1: Stochastic image denoiser

Input: {o;}",, ¢, T, y, 00
1 Initialize xg <y
2 fori< 1to Ldo

3 a; e -02)a?

4 fort <+ 1toT do

5 Draw z; ~ N (0,1)

6 A s(xpo1,0)+(y —z—1)/ (03 - 01-2)
7 Ty — Tpo1 + @A+ 2052

8 end

9 Tog < XT

10 end

Output: 7

score function (NCSNv2 [40]) can be interpreted as a de-
noiser estimating MMSE. Indeed, we have utilized this net-
work as such, and it performs very well, as can be seen in
the MMSE denoiser results presented in Figure 1 and Ta-
ble 1.

Likewise, we can utilize in our scheme any denoiser
trained/designed to minimize MSE (for various noise levels
o) in order to estimate the score function. A variety of such
denoisers exist, each implicitly defining and serving a dif-
ferent prior distribution. Adopting a broader view, the fact
that MMSE denoisers can be leveraged for different tasks is
a fascinating phenomenon, which has already been exposed
in recent work in different contexts [46, 35, 23].

3. Proposed Algorithms
3.1. Stochastic denoising

In order to clean a given noisy image y, we propose to
gradually reverse the noise addition process described in
subsection 2.2.1. We do so stochastically, using a varia-
tion on the annealed Langevin dynamics [39] sampling al-
gorithm. We denote by s (z, ) a function that estimates the
score function of the prior, and we present our method in Al-
gorithm 1. The algorithm follows the direction of the condi-
tional score function, with a step size of «; that is gradually
tuned down as the noise level decreases (see [39]).

Our algorithm is initialized with the given noisy image v,
and it follows the annealed Langevin dynamics scheme us-
ing the score function of the posterior as presented in Equa-
tion 7. This allows it to effectively sample from the poste-
rior distribution p (Z1, | y) ~ p (x| y), and thus be consid-
ered a stochastic image denoiser.

3.2. Image inpainting

In the noisy inpainting problem, our observation is only a
known subset M of the pixels of the noisy image y = z+n.
We denote the pixels M of any image w as w™ and the re-
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Figure 3. Top row: Several given noisy images (o9 = 0.406).
Second row and below: Various outputs of our algorithm corre-
sponding to each noisy image.

maining pixels as w'?. With these notations, the visible ob-
servation is 4. However, our approach remains the same
as in the denoising problem, aiming to sample from the pos-
terior distribution p (:c | yM )

As our observation is incomplete, we initialize
the recovery algorithm with an i.i.d. Gaussian noise
image with a very strong variance (as in [40]), and
proceed from there by sampling from the posterior
distribution given ™. More formally, we use a
fixed sequence of noise levels {o;}"', such that
O_K > 0_(K-1) > > o9 > >0 >o0r41 =0,
where o is the noise level of the observation. In calcu-
lating the score function V; log p (:E | y™M ), we divide our
analysis into two cases, ¢ < 0 in which the noise we handle
is stronger than o, and ¢ > 0, in which the noise bypasses
oo and gradually decreases towards zero. We start our
derivations with the second case, as it is simpler:

For the case where ¢ > 0, we recall Equation 4 and
deduce that

Vi logp(yM | 57) =V;zlogpyu_sum (yM — M |i)

S S 8 il
27 (02 — 02) P12 (0§ — o) .

Calculating this results in

= V;log [

Vi logp (y | #) = La=tr ©)
Vir logp (yM | 5:) =0 ’

Figure 4. From top to bottom: original LSUN-bedroom image,
noisy versions of it (oo from left to right: 0.198, 0.403, 0.606),
MMSE denoiser outputs, and instances of our algorithm’s output.

which when combined with Equation 5 gives the score func-
tion to use:

M

{ Vzum logp (i’ | yM) = [V:E logp (j')]M + y:;T:iiT(lO)
Virlogp (z | yM) = [Vs logp(i")]R

Since the noise level in this case is below o, we effectively
obtain the same score function as in the denoising task for
the observed pixels M. As for the remaining pixels, R, the
observation does not add any information, leaving us to rely
only on the prior distribution.

For the other case where 7 < 0, we recall the definition
of the conditional distribution,

ir g oy _ PELET M)
pETIET) =y
=p (27 y™)p (M [ M) = p (&M, 27 | yM)

With that in mind, we present the following calculation of
the log of the posterior function:

logp (% | y™) =logp (&M, 2% | y™)
=log [p (" | M, y™)p (@™ | y™)] (11)
=logp (" | #M,y™) +logp (#M | y™).
Referring to the second term, we can conclude that, similar
to Equation 4, we have (2 — y) ~ N (0, (02 — o) I).
This difference is independent of 7% and thus,
p (%] &M, yM) can be expressed as either p (27 | #M)
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Dataset 0o BM3D MMSE Ours | Ratio

0.100 | 30.18 32.58  29.39 | 2.07
0.203 | 25.43 29.08  26.28 | 1.90
CelebA | 0.406 | 19.73 25.78  23.24 | 1.79
0.607 | 16.75 23.93 2152 | 1.73
0.702 | 15.87 23.27 2090 | 1.72

0.198 | 27.19 2995 2711 | 191
0.403 | 21.31 26.50 24.00 | 1.78
0.606 | 18.17 24.55 2222 | 1.72

LSUN
bedroom

Table 1. Average PSNR results using 64 CelebA images and 64
LSUN images, including BM3D [17] as a baseline. The last col-
umn shows the MSE ratio between the MMSE and ours.

orp ( Bly ) Equation 11 can be derived w.r.t. #M

V~M logp (i“yM)
= Vzum [logp( it |y )-i-longM_YM (1'

~ Vim longM,yM (-i'M - yM | yM) )

More details on this approximation are in the supplementary
material. This results in

( M) ?JM — M
Vainlogp (T |y = . (12)
o} —op

Deriving Equation 11 w.r.t. 7 yields:

Virlogp (2 | y™)
= V;r [logp (27| M) +logp (2" | y™)]

~R M
= Vzrlogp (2 R a:M) = V3zr log [%]

= V;r [logp(

—logp (#")]
= V;zrlogp (2) = z

[Vzlogp (#)]",

resulting in

Vinlogp (% |y™) = [Vzlogp (2)]".  (13)
As the noise level in this case is above g, the score func-
tion for the known pixels M points to the direction of the
observation 4™, which can be considered a denoised ver-
sion of M. For the remaining pixels, R, the score function
remains the same as in the previous case.

To conclude, by using an estimator for V; log p (Z) and
combining equations 10, 12, and 13, we obtain a tractable
method for estimating the score function of the posterior
distribution for the inpainting problem. By using this and
starting Algorithm 1 with a very strong noise o_x > 0y,
we obtain a path towards solving the noisy inpainting prob-
lem, as presented in Algorithm 2.

FM M | yM)]

Algorithm 2: Inpainting algorithm

Input: {o;}" ., e T, yM
1 Initialize 2y with random noise
2 fori« —K to—1do

3 a; e -02)a?

4 fort <+ 1toT do

5 Draw z; ~ N (0,1)

o | | AM (M —al) /(02 - oB)
7 AR [s(zi1,00)])"

8 Ty T1 + A+ V2052

9 end

10 To < T

11 end

12 fori < 1t0 L do

13 a; e -02)a?

14 fort <+ 1toT do

15 Draw z; ~ N (0,1)

16 AM  [s(zy 1,00

17 AM — AM + (yM — M) / (03 — 02)
18 AR [s(z_1,09)]"

19 Ty o1 + A+ V202

20 end

21 To < T
22 end

Output: z 7

4. Experimental Results
4.1. Denoising experiments

As our algorithm extends the work reported in [39]
and [40], it is natural to use their denoiser network,
named the noise conditional score network version 2 (NC-
SNv2) [40]. As is customary in the image synthesis litera-
ture, this network was trained on a specific class of images
rather than generic natural ones. Previous work [32, 33]
have also shown that denoising can benefit from training on
a narrow class of images.

We perform experiments using the NCSNv2 net-
work trained separately on CelebA [30], FFHQ [24],
and the bedroom and tower categories in LSUN [51].
CelebA images are center cropped to 140 x 140 pix-
els, then resized to 64 x 64 pixels, FFHQ images are
resized to 256 x 256 pixels, and LSUN images are
center cropped and resized to 128 x 128 pixels, exactly
as in [40]. We do not change the hyperparameters re-
ported in [40], as they work well for our tasks. For
CelebA experiments we pick L = 127,166, 204, 226, 234
for o0¢ = 0.100,0.203,0.406,0.607,0.702 respectively.
For FFHQ experiments we pick L = 663,816,906
for o0p =0.200,0.400,0.602 respectively. For
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std=0.60, p-val=0.82, p=0.01

(0.84,0.02) (0.82,0.01) (0.77,-0.01) 250

(0.89,-0.02) (082,-001) (0.71,-0.01) o

0 1 2

Figure 5. Left: Residual images, p-values and p values on CelebA
with 0o = 0.607 for 3 different images. The standard deviation is
0.59 or 0.6 in all images. The top row shows our method’s resid-
uals, and the bottom one shows the MMSE denoiser’s residuals.
Right: A histogram for a residual image from our algorithm.

LSUN experiments we pick L = 330,408,453 for
oo = 0.198,0.403, 0.606 respectively. We note that in each
of our experiments we use the same pre-trained model for
both the MMSE denoiser and in our algorithm.

As can be seen in Figure 2, 4, and 6, our stochatic de-
noising method achieves sharp and real-looking results, re-
gardless of the noise level in the input image, whereas the
MMSE denoiser suffers from more severe averaging arte-
facts as the noise level increases. The results’ sharpness is
also preserved across different stochastic variations, as can
be seen in Figure 1, 3, and in the supplementary material.

We evaluate the perceptual quality of the results using
LPIPS [56], in which our model performs significantly bet-
ter than the MMSE denosier, as shown in the supplemen-
tary material. We also asses the similarity to the original
clean image using the MSE metric (or its equivalent PSNR).
While the MSE measure has clear drawbacks [47], and our
algorithm inherently achieves poorer results than an MMSE
denoiser, we still find value in reporting such results. It was
proven in [8, 9] that we do not need to sacrifice more than
a factor of 2 in MSE in order to achieve perfect perceptual
quality, which serves as a good baseline for us to evaluate
our results. As can be seen in Table 1, the aforementioned
ratio is comfortably below 2 in all experiments but one.

4.2. Assesing the estimated noise

We now turn to show that all outputs of the presented
algorithm are viable denoising results. A sample from
p(z | y) should both look real and fulfill the condition
(y—2) ~N (0,081). The latter is also a criterion for
claiming that a given algorithm is a denoiser, as it suggests
that the content removed from its input is indeed noise-like.
MMSE denoisers, for example, fulfill this criterion.

In order to empirically test whether our algorithm is a
stochastic image denoiser as we claim, we analyze the esti-
mated noise — the difference between its input and output, as
visualized in Figure 5. Our analysis includes three tests: for
whiteness, for noise energy, and for the distribution. First,

Figure 6. From top to bottom: original 256 x 256 FFHQ images,
noisy versions with oo = 0.4, and our algorithm’s outputs.

we calculate Pearson’s correlation coefficient (p) among ad-
jacent pixels in all 8 directions, take the one with the max-
imum absolute value, and if it is sufficiently close to zero,
we conclude that the noise is uncorrelated. We proceed by
performing D’ Agostino and Pearson’s test of normality [18]
in order to determine whether the difference is normally dis-
tributed. For a confidence level of 95%, we conclude that
the tested signal is indeed Gaussian if the p-value is greater
than 0.05. We conclude by evaluating the empirical stan-
dard deviation of the difference and comparing it to og.

We perform these tests on several output images for each
noisy input and different noise levels. In almost all of our
tests, |p| is smaller than 0.02, the p-values are comfortably
above 0.05, often reaching more than 0.9, and the standard
deviations match the input noise level o almost perfectly.
We show one of the residual histograms in Figure 5, and
defer the rest to the supplementary material. Based on these
observations, we conclude that our sampled images can be
regarded as viable stochastic denoising results. Figure 7
shows the intermediate images obtained along our algo-
rithm, showing a gradual denoising effect, while preserving
and even synthesizing details.

4.3. Inpainting experiments

Following the calculations shown in subsection 3.2, we
adapt our stochastic denoiser algorithm for solving the
noisy inpainting task. As in subsection 4.1, we utilize the
NCSNv2 [40] network for estimating the score function of
the prior distribution, and we perform experiments on the
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Figure 7. Intermediate results of Algorithm 1 on LSUN-bedroom images with oo = 0.606.

Figure 8. From top to bottom: original LSUN-tower images, the
observations with a text overlay and additive noise (oo = 0.198),
and our inpainting algorithm’s outputs.

CelebA [30] and LSUN [51] datasets. Here as well we do
not change the hyperparameters reported in [40]. We show-
case results of our algorithm in Figure 8, 9, and in the sup-
plementary material.

5. Conclusion

In this work we present a new image denoising approach,
which samples from the posterior distribution given the
noisy image. We argue that in order to attain high perceptual
quality, a denoising algorithm should be stochastic rather
than deterministic, having multiple possible outcomes. We
present a denoising algorithm along these lines, showcas-
ing high-quality results. Our method relies on the annealed
Langevin dynamics algorithm, requiring only an MMSE de-
noiser, without any additional retraining, constraints on the
model architecture, nor extra model parameters. In addi-
tion, we extend our algorithm for handling the problem of
noisy image inpainting.

Our algorithm takes a significant amount of time (~ 2

Figure 9. From top to bottom: original CelebA images, the obser-
vations with 20 missing rows and additive noise (oo = 0.1), and
two outputs of our inpainting algorithm.

minutes for 8 CelebA images) in order to guarantee a proper
convergence to a valid sampling result. Means to speed-
up this procedure are therefore necessary. Our future work
will focus on speeding this method by multi-scale denois-
ing [10], deployment of denoisers of varying complexities,
and other acceleration techniques. Other future research di-
rections we consider include (i) treating general content im-
ages using general purpose denoisers, and handling much
larger images (our current solution operates on images of
up to size 256 x 256 pixels), (ii) assessing the image mani-
fold as implicitly implied by varying denoisers; and (iii) de-
veloping uncertainty measures for the denoising solution to
expose and quantify the diversity of the possible solutions.
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