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Abstract

Image-to-image translation covers a variety of applica-
tion scenarios in reality, and is one of the key research di-
rections in computer vision. However, due to the defects of
GAN, current translation frameworks may encounter model
collapse and low quality of generated images. To solve the
above problems, this paper proposes a new model CWT-
GAN, which introduces the cross-model weight transfer
mechanism. The discriminator of CWT-GAN has the same
encoding module structure as the generator’s. In the train-
ing process, the discriminator will transmit the weight of
its encoding module to the generator in a certain propor-
tion after each weight update. CWT-GAN can generate di-
verse and higher-quality images with the aid of the weight
transfer mechanism, since features learned by discrimina-
tor tend to be more expressive than those learned by genera-
tor trained via maximum likelihood. Extensive experiments
demonstrate that our CWT-GAN performs better than the
state-of-the-art methods in a single translation direction for
several datasets.

1. Introduction
Image-to-image translation transforms images from one

domain to another while keeping their content unchanged,
which has received extensive attention from academia. As
shown in Figure 1, many tasks in computer vision can be re-
garded as image-to-image translation problems, such as im-
age restoration [20], colorization [24, 3], super-resolution
[14, 4, 11] and style transfer [5].

Currently, image-to-image translation is mainly imple-
mented on the basis of GAN models. CycleGAN [26] pro-
vides a classic modeling idea of image-to-image translation
by two groups of GANs. Later models [16, 22] are im-
proved on this basis. With the development of deep learn-
ing, the results of image-to-image translation have been
continuously improved.
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Figure 1. Examples of image-to-image translation. (a) Style trans-
fer. (b) Semantic segmentation. (c) Restoration. (d) Colorization.

Existing GAN-based translation models [10, 15, 26]
have achieved good results, but as shown in Figure 2, they
still suffer two common problems: 1) Due to the defects of
GAN and the imperfection of their loss function, model col-
lapse and low diversity of results may occur; 2) The quality
of the images generated by the unsupervised models using
unpaired datasets still has much room for improvement.

To solve the above problems, we propose an unsuper-
vised image-to-image translation network CWT-GAN us-
ing cross-model weight transfer mechanism. The model
contains two GAN-based networks to output images from
different domains and distinguish these images separately.
The discriminators of CWT-GAN will transfer the weight
of their encoders to those of generators in a certain pro-
portion after each weight update phase. Since the encoders
performing discriminative tasks can learn more expressive
features for inference than the encoders trained via max-
imum likelihood, CWT-GAN can generate more diverse
and higher-quality images with the help of our cross-model
weight transfer mechanism.

In addition, most of studies [26, 10, 15] have revolved
around the local texture translation of images, but in the
case of significant shape differences between the source do-
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Figure 2. Problems in image-to-image translation. (a) The quality
of the generated images is poor. (b) Mode collapse.

main and the target domain, the performance of these net-
works is unsatisfactory. To solve the above problems, CWT-
GAN introduces a residual attention mechanism to further
promote the spread of features in the encoders. This mecha-
nism is implemented by using class activation maps (CAM)
[25] under global pooling and average pooling, which is
helpful for judging the consistency of semantic information
under unsupervised conditions, so that the output images
have better generation details in important areas. Mean-
while, the residual connection is introduced based on CAM,
and the trade-off between the attention feature and the orig-
inal feature is determined by updating the learnable param-
eter γ during the training process.

Our contributions can be summarized as follows.

• We propose an unsupervised image transformation
network named CWT-GAN and the cross-model
weight transfer mechanism, to make full use of the ad-
vantages of the encoder in the GAN discriminator.

• Our method achieves state-of-the-art results in a single
translation direction for several datasets.

2. Related work

In recent years, image-to-image translation has been one
of the main application scenarios of Generative Adversarial
Nets (GANs) [6]. Due to the difficulty of obtaining paired
data, the unsupervised method is more popular.

CycleGAN [26] consists of two sets of generators and
discriminators, which can learn the two-way mapping be-
tween the source domain and the target domain. On the
basis of CycleGAN, AttentionGAN [22] creates an atten-
tion mask through the built-in attention mechanism, and
then fuse the generated result with the attention mask to ob-
tain a high-quality target image. Considering that the above

methods cannot distinguish the distribution of generated im-
ages and target domain images, DA-GAN [16] trains an at-
tention encoder in a joint manner, and obtains object-level
relevance through object pairs embedded with attention in-
formation, thereby constraining the whole sample and the
object at the same time.

To solve significant shape changes in multiple tar-
get instances, InstaGAN [19] combines instance informa-
tion to improve generation results, and proposes a con-
text preservation loss to learn identity information outside
the target instance. TransGaGa [23] introduces a novel
decomposition-translation framework for the significant de-
formation problem. This method does not directly learn the
mapping on the image space, but decomposes the image
space into the Cartesian product of the appearance hidden
space and the geometric hidden space.

In addition, U-GAT-IT [12] introduces an attention
mechanism to better realize overall translation and large
shape changes. Both the generator and discriminator of U-
GAT-IT use an auxiliary classifier to obtain the attention
image through the class activation mapping module, so that
the generator can generate more reasonable details in the
output image. NICE-GAN [2] uses the residual connection
mechanism to furtherly improve the attention mechanism,
through a trainable parameter to control the ratio of atten-
tion feature map and original feature map.

However, model collapse and low diversity of results
may occur, since the defects of GAN. The quality of the im-
ages generated by the unsupervised models using unpaired
data still has much room for improvement.

3. Method
In this section, we first introduce the general idea, and

then provide the details of each component in CWT-GAN,
including generators and discriminators.

3.1. Model structure and loss functions

Given unpaired samples {ai}Ni=1 ∈ A , {bj}Nj=1 ∈ B
from two domains, our purpose is to train an unsupervised
image-to-image translation network to realize the mutual
translation of samples between domain A and B. In Figure 3,
CWT-GAN consists of two GAN-based networks: one is
used to translate the source domain sample a into the tar-
get domain and the other is the opposite. The generator GA

is composed of an encoder EG
A , a hidden layer module HA

and a decoder DeA, used to translate the images a from the
domain A into GA(a). The same is true for the generator
GB . And the discriminators DA and DB are respectively
used to identify whether the input images from their respec-
tive domains are real images.

Figure 3 shows the structure of CWT-GAN. Take do-
main A as an example, the input images of GA and DA

are both from A, so EG
A and ED

A both perform extracting
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Figure 3. Illustration of the cross-model weight transfer mechanism. In CWT-GAN, the encoder of the generator and the encoder of the
discriminator have exactly the same structure. During training, the discriminator will transfer the weight of its encoder to the generator in
a certain proportion after each weight update phase.

features from A. This provides conditions for using cross-
model weight transfer mechanism (CWT) between the gen-
erators and the discriminators. During the training process,
the two discriminators will respectively transfer the weights
of ED

A and ED
B to EG

A and EG
B in a certain proportion af-

ter each weight update phase. ED
A and ED

B , as the down-
sampling modules of the discriminators, are used for the
feature extraction sub-task. Therefore, while retaining the
constraints of reconstruction loss and cycle consistency loss
on the generators, the weight transfer mechanism of CWT-
GAN uses ED

A and ED
B for processing discriminant tasks

to improve the perception and inference capabilities of EG
A

and EG
B .

Figure 4 shows the structure of generator in CWT-
GAN. GA can be divided into three modules: encoder
EG

A , hidden layer module HA and decoder DeA. EG
A

is mainly composed of serial Convolution-Spectral Norm-
Leaky ReLU layers, which encode the input images into
high-dimensional feature maps. Among them, the Spectral
Norm [18] prompts EG

A to obey Lipschitz continuity, which
limits the severity of function changes, thereby avoiding the
model collapse of GA. HA is composed of six residual con-
volution blocks [7], which abstracts the features at multiple
levels to accurately divide different types of data linearly.
Finally, DeA contains two sub-pixel convolutional layers
[21] for up-sampling.

The loss functions used by the generator include adver-
sarial loss, cycle consistency loss and reconstruction loss.
The adversarial loss can promote the matching of the dis-
tribution of the generated images with the distribution of
target domain images. CWT-GAN uses the least-square ad-
versarial loss [17] to achieve more stable training and higher

CONV + SN +

Leaky-ReLU

AdaResBlock + 

AdaLIN + ReLU

Sub-pixel-CONV 

+ LIN + ReLU

Input Output

Figure 4. The structure of generator in CWT-GAN. The network
can be divided into three modules: encoder, hidden layer module
and decoder.

generation quality, as shown in Eq.(1):

min
Gb→a

Lb→a
gan = Ea∼A

[
(DA(a))

2
]

+ Eb∼B

[
1−DA (GB(b))

2
] (1)

CWT-GAN uses the cycle consistency loss function to
reduce the probability of model collapse. Given an image
a ∈ A, after being transformed from A into B, and then back
to A, the generated image should be in the same distribution
as a. The cycle consistency loss function is shown in Eq.(2):

La→b
cycle = Ea∼A [|a−GB (GA(a))|1] (2)

To ensure the output and the input maintain a similar
color distribution, CWT-GAN also applies a reconstruction
consistency constraint to the generator. That is, given an
image a ∈ A, after using GB to transform the image a, the
output image should not be changed. The reconstruction
loss function can assist the generator GB to extract hierar-
chical features, and reduce the error caused by the DA in the
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Figure 5. The structure of discriminator in CWT-GAN. The net-
work consists of three modules: encoder, classifier and auxiliary
classifier.

feature extraction process. The reconstruction loss function
is shown in Eq.(3):

Lb→a
identity = Ea∼A [|a−GB (a)|1] (3)

Inspired by the work of using affine transformation pa-
rameters in the normalization layer and combining the
normalization function [9], Junho et al. [12] combine
AdaIN [9] with LN [1], and propose AdaLIN normalization
method. CWT-GAN introduces this method that combines
the advantages of AdaIN and LN by selectively retaining
or changing content information and solves a wide range of
image-to-image translation problems.

Figure 5 shows the structure of discriminator in CWT-
GAN. For the discrimination task, CWT-GAN uses two dis-
criminators to determine whether the input images are real
data or generated by generators. As shown in Figure 5,
DA consists of three modules: encoder ED

A , classifier CD
A

and auxiliary classifier ηDA . ED
A is composed of several

Convolution-Spectral Norm-Leaky ReLU layers and used
to encode the input image into high-dimensional features.
CD

A only contains a layer of convolutional neural network
and outputs the judgment result of the input image. ηDA
adopts the design in NICE-GAN [2], and measures the im-
portance of each feature map generated by ED

A by learn-
ing an attention vector ω. Then, the feature map containing
residual attention mechanism is obtained by the equation
f(a) = γ × ω × Ea(a) + Ea(a) , in which the trainable
parameter γ determines the trade-off between the attention
feature and the original feature.

The loss function used by the discriminator is the ad-
versarial loss. To promote the matching of the distribution
of generated images with the distribution of images from
target domain, CWT-GAN optimizes parameters of the dis-
criminator when maximizing the adversarial loss, as shown

in Eq.(4):

max
Da

Lb→a
gan = Ea∼A

[
(DA(a))

2
]

+ Eb∼B

[
1−DA (GB(b))

2
] (4)

ED
A adopts the same network structure as the generator

encoder EG
A . In the training process, CWT-GAN first up-

dates weights of the discriminator network by maximizing
the adversarial loss Lb→a

gan , then passes weights of ED
A to EG

A

according to the proportional parameter α, and finally up-
dates weights of the generator network by minimizing the
adversarial loss, cycle consistency loss and reconstruction
loss. The weight transfer mechanism is shown as Eq.(5):

wG
E = α · wD

E + (1− α) · wG
E (5)

where wG
E represents weights of the encoder in generator,

wD
E represents weights of the encoder in decoder, and α is

used to determine the proportion of weight transfer.
Compared with EG

A that performs the generation task,
ED

A learns features that are more expressive and more suit-
able for inference. Therefore, with the help of the weight
transfer mechanism, while maintaining the constraints of
reconstruction loss and cycle consistency loss, EG

A can
promote its feature perception and inference capabilities
through ED

A , so that the generator can output diverse and
higher-quality generated images.

3.2. Total loss

The generator of CWT-GAN is trained through a joint
loss function, as shown in Eq.(6):

min
G

LG = λ1 · Lgan + λ2 · Lcycle + λ3 · Lidentity (6)

where λ1, λ2 and λ3 are all hyper-parameters that control
the importance of each loss.

Under the premise of applying the weight transfer mech-
anism, the discriminator of CWT-GAN only needs to be
configured with the adversarial loss, which reduces the cou-
pling and training cost of the model. The formula is shown
in Eq.(7):

max
D

LD = Lb→a
gan + La→b

gan (7)

During training time, CWT-GAN will follow the process
cycle of training the discriminator, encoder weight transfer
and training generator to achieve the optimization of net-
work weights. During testing time, as long as the test image
is input to the corresponding generator, the generated image
can be output.

4. Experiments
This section presents the detailed experiments of CWT-

GAN and other advanced models. We first introduce

1817



datasets, comparison methods and evaluation metrics, then
provide comparison results, and lastly show the ablation
studies.

4.1. Datasets

To verify the effectiveness of CWT-GAN, we select
three popular unpaired datasets, including horse↔zebra,
summer↔winter, and cat↔dog. The first two datasets are
used in CycleGAN [26], and the last is studied in DRIT
[15]. All images are resized to 256 × 256 for training and
testing.

4.2. Comparison methods

To demonstrate the effectiveness of CWT-GAN,
we select several representative unsupervised image-to-
image translation models in the experiment, including
CycleGAN[26], MUNIT[10], DRIT[15], U-GAT-IT [12]
and NICE-GAN [2]. All methods being compared are per-
formed through using public codes.

4.3. Evaluation metrics

In addition to the qualitative comparison of generated
images obtained by different models through manual ob-
servation, this paper uses the Fréchet Inception Distance
(FID) [8] to quantitatively evaluate the performance. FID
compares the statistical data of the generated sample with
the real sample. For each image set to be compared, FID
obtains the features extracted from the hidden layer of the
network after they are input to InceptionNet, and then calcu-
lates the Fréchet distance between the distributions through
the Gaussian distribution of these features. Lower FID is
better, corresponding to generated images more similar to
the real.

4.4. Implementation details

The total number of iterations of CWT-GAN and other
networks is 100K. We set the weight of adversarial loss, cy-
cle consistency loss and reconstruction loss to 1, 10, and
10 respectively. The transfer ratio of our weight transfer
mechanism is set to 0.9, and we use Adam [13] as the
optimization algorithm with the learning rate 0.0001 and
(β1, β2) = (0.5, 0.999). The encoders of the generators and
discriminators all use the Leaky-ReLU activation function
with a negative slope of 0.2. The batch size is set to 1. Our
code is available at https://github.com/lxg0387/CWT-GAN.

4.5. Comparisons with SOTA

To prove the validity of CWT-GAN, we use CWT-GAN
and other advanced networks to process translation tasks on
a variety of datasets, and compare the FID scores.

Table 1 shows the FID scores obtained by different mod-
els in the cat↔dog task. As we can see, CWT-GAN
achieves the best FID score in the translation direction from

Model FID (Dog2cat) FID (Cat2dog)
CWT-GAN (our) 43.77 46.29
NICE-GAN [2] 48.79 44.67
U-GAT-IT-light [12] 80.75 64.36
CycleGAN [26] 119.32 125.30
MUNIT [10] 53.25 60.84
DRIT [15] 94.50 79.57

Table 1. FID scores of different models in the cat↔dog dataset.
Lower is better.

dogs to cats. And in the opposite direction, its FID score
is second only to NICE-GAN’s, and the difference between
the two is not significant. This shows that CWT-GAN has
a good translation ability on this task. In contrast, although
U-GAT-IT, MUNIT and DRIT can successfully transform
the semantics of the object, the translation effect is signif-
icantly worse than our model. The FID score obtained by
CycleGAN is far worse than that of all other models. The
possible reason is that CycleGAN is better at transform-
ing low-level features, such as color and texture, while the
cat↔dog task involves the problem of large deformation of
the object. Therefore, it is difficult for CycleGAN to gener-
ate effective output images. CWT-GAN has a similar struc-
ture to U-GAT-IT, such as attention mechanism and multi-
scale discriminator, while the main difference between them
is that CWT-GAN applies the cross-model weight transfer
mechanism designed in this paper.

Figure 6 shows the effect of CWT-GAN and other mod-
els in generating images in cat↔dog translation task. As
the images generated by CWT-GAN show, after the source
domain object is transformed into the target domain, the de-
tails of the object’s face, ears, etc. have produced reasonable
changes in color, shape and other characteristics, indicating
that CWT-GAN has a good performance in transforming
low-level features and significantly deformed objects. Ob-
serving the images generated by other transformation net-
works, we can see that results generated by NICE-GAN and
MUNIT are relatively clear, but some of generated images
have ambiguous expressions at the junction of target and
background. And for generated samples of CWT-GAN, it
can be found that the connection between the object and the
background is more natural, which increases the difficulty
of artificially distinguishing the authenticity of the samples.
In addition, the generation results of CycleGAN fulfill the
above analysis of using it to handle the translation task of
significant deformation. Due to the large shape difference
between cats and dogs, CycleGAN only achieves color and
texture transfer during the translation process, but it per-
forms poorly in the translation of the target shape. It can
be clearly seen from the samples generated by CycleGAN
that the facial features of some objects are incomplete, mis-
placed, or redundant.
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Figure 6. Generated results of cat↔dog translation task. As the images generated by CWT-GAN shown, the details of the object’s face,
ears, etc. have produced reasonable changes in color, shape and other characteristics. However, some results generated by NICE-GAN and
MUNIT have ambiguous expressions at the junction of target and background. Even worse, some of CycleGAN’s generated images have
completely collapsed.

In Table 2, CWT-GAN is better than all other models
in the translation direction from winter images to summer
images. CWT-GAN is second only to NICE-GAN in the
opposite direction and the FID score gap is only about 0.5.
Compared with the cat↔dog task, the key of seasonal trans-
lation task is the change of image color and texture, and
significant deformation phenomenon rarely occurs. There-
fore, by comparing Table 1 and Table 2, it can be found
that CycleGAN has a significant improvement in process-
ing seasonal transformation tasks, and is even better than
U-GAT-IT-light. The above phenomenon proves again that
CycleGAN is good at transforming low-level features be-
tween the two domains but is weak in dealing with signif-
icant deformation problems. Since CWT-GAN uses cross-
model weight transfer mechanism, while the constraints of
reconstruction loss and cycle consistency loss on the gener-
ator are retained, the discriminator encoder for processing
classification tasks improves the feature perception and in-
ference capabilities of the generators, so that the model can
output effective results in a variety of image-to-image trans-
lation tasks.

Table 3 shows the FID scores obtained by CWT-GAN

Model FID (Winter2summer) FID (Summer2winter)
CWT-GAN (our) 76.99 74.92
NICE-GAN [2] 76.44 76.03
U-GAT-IT-light [12] 80.33 88.41
CycleGAN [26] 79.58 78.76
MUNIT [10] 99.14 114.08
DRIT [15] 78.61 81.64

Table 2. FID scores obtained by different models for processing
seasonal transformation tasks. Lower is better.

and other models in processing the transformation task be-
tween horse and zebra. According to the data in the table,
CWT-GAN leads all other models in the transformation di-
rection from zebra images to horse images, and NICE-GAN
has the lowest FID score in the transformation direction
from horse images to zebra images. Figure 7 shows the
partial generation results of CWT-GAN in seasonal trans-
formation and horse↔zebra transformation.

Through the above three sets of experiments, it verifies
that CWT-GAN can achieve the best level in at least one
direction in a variety of translation tasks, and in the other
direction, it is second only to the current state-of-the-art
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Model FID (Zebra2horse) FID (Horse2zebra)
CWT-GAN (our) 142.27 85.44
NICE-GAN [2] 149.48 65.93
U-GAT-IT-light [12] 145.47 113.44
CycleGAN [26] 156.19 95.98
MUNIT [10] 193.43 128.70
DRIT [15] 200.41 116.63

Table 3. FID scores of different models for the transformation task
between horse and zebra. Lower is better.

Input

Input

Output

Output

Figure 7. Generated results of CWT-GAN in seasonal transforma-
tion and horse↔zebra transformation.

model NICE-GAN.
Why CWT-GAN can generate high-quality images to ap-

ply our cross-model weight transfer mechanism? The rea-
son is that the discriminator will transfer its encoder weight
to the generator according to the hyperparameter α after up-
dating the weights. Since the encoder that performs the dis-
criminative task can learn more expressive and more suit-
able features for inference than the encoder trained using
the maximum probability method, CWT-GAN can use this
mechanism to generate more diverse and higher-quality tar-
get domain images.

4.6. Ablation studies

To analyze the impact of key technologies used in CWT-
GAN, we conduct ablation experiments on these technolo-
gies on the cat↔dog task. The key technologies investi-
gated in the experiment include our Cross-model Weight
Transfer (CWT) mechanism and the Residual Attention
(RA) mechanism [2] introduced in the discriminator.

Table 4 shows the ablation results. It can be seen that
CWT and RA both improve the transformation performance
of the model. By combining all the key components, CWT-
GAN’s image transformation performance is better than
other variants. The reason why the CWT mechanism is ef-

Model FID (Dog2cat) FID (Cat2dog)
Baseline 74.34 76.51
Baseline + CWT 52.02 63.91
Baseline + RA 48.70 50.35
Baseline + CWT + RA (our) 43.77 46.29

Table 4. CWT-GAN ablation experiment on the cat↔dog dataset.
Lower is better.

fective may be that the mechanism can shorten the transla-
tion distance of latent space between different domains, so
that CWT-GAN based on the assumption of shared latent
space can better realize domain translation in image space.

Figure 8 shows qualitative results of the above ablation
experiment. Due to the lack of cross-model weight trans-
fer mechanism and residual attention mechanism, the basic
model has a greater probability of ignoring the edge details
of the object when performing translation processing and is
not able to effectively deal with the significant deformation
of the object during the translation. Consequently, it col-
lapses in the translation of some samples. When the basic
model only uses the residual attention mechanism, the gen-
erated image does not achieve a sufficiently natural transi-
tion at the intersection of different coat colors of the target,
and some features of the source domain object still remain
in the target’s facial features. When the basic model is only
equipped with the weight transfer mechanism, there is still
a lot of room for improvement in the degree of completion
of the content transformation of the generated image.

Finally, our CWT-GAN, which is configured with the
above two key components at the same time, can better pay
attention to the edge details of the object when performing
image transformation, and benefits from the strong feature
perception and inference capabilities of the discriminator
encoder. Its generator can use a shorter translation distance
between different domains, so that it can output high-quality
generated images even when solving tasks with significant
deformation. In Figure 8, when CWT-GAN configures all
the key modules, it generates images with the highest defi-
nition and processes the target edge most perfectly.

In our cross-model weight transfer mechanism, the hy-
perparameter α controls the degree of influence of the dis-
criminator encoding module on the generator encoder. To
explore the optimal ratio of the weight transfer, this paper
uses CWT-GAN to perform seasonal transformation tasks
under a variety of α settings.

Table 5 shows experiment results of α setting. When α
is set to 0.9, the image transformation effect of model is
better than other values. When α is set to 0, that is, when
the model does not apply the influence of the discriminator
encoding module on the generator encoder, the transforma-
tion effect of the model is reduced. When α is set to 1, that
is, when the discriminator encoding module completely re-
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(a)                (b)                (c)                 (d)                (e)

Figure 8. Results of ablation experiment. (a) Input. (b) Baseline.
(c) Baseline + CWT. (d) Baseline + RA. (e) Baseline + CWT +
RA.

α setting FID (Winter2summer) FID (Summer2winter)
0 82.33 76.51

0.6 84.36 78.70
0.7 82.91 75.44
0.8 80.03 75.28
0.9 76.99 74.92
1.0 80.61 75.22

Table 5. FID scores of CWT-GAN performing seasonal transfor-
mation tasks under different α settings. α is used to determine the
proportion of weight transfer.

places the generator encoder, the model cannot achieve the
best image-to-image translation effect because the encoding
modules lacks the constraints of cycle consistency loss and
reconstruction loss.

It can be seen from the above phenomenon that the cod-
ing module that performs the discrimination task can pro-
mote the feature extraction and inference ability of the gen-
erator coding module. The cycle consistency loss and re-
construction loss used in the generation task are also crucial
to the training of the generator coding module. Therefore,
our cross-model weight transfer mechanism combines the
weight transfer of the discriminator encoding module with
the constraints of cycle consistency loss and reconstruction
loss, so that the CWT-GAN generator achieves the rela-
tively best image transformation performance.

5. Conclusion

This paper proposes a new image-to-image translation
network CWT-GAN that performs weight transfer between
the generators and the discriminators, aiming at the prob-
lems of low diversity and insufficient quality of generated
images in current GAN-based image transformation tasks.
Compared with the encoder trained using the maximum
likelihood method, the features learned by the model per-
forming the discriminative task are more expressive and
more suitable for inference. Therefore, CWT-GAN can
generate diverse and high-quality generated images with the
help of our weight transfer mechanism. We compare CWT-
GAN with other advanced translation methods on multiple
datasets, and verify that our CWT-GAN has achieved some
state-of-the-art results. In the future, CWT-GAN can also be
extended to multi-modal and multi-domain image-to-image
translation problems.
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