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Abstract

We designed and demonstrated a system that fused color

and near-infrared (NIR) images in the radiance domain.

The system is designed to enhance image quality captured

in outdoor environments, especially in hazy weather condi-

tions. Previous dehazing methods based on RGB-NIR fu-

sion exist but have rarely addressed the issue of color fi-

delity and potential see-through effect of fusing with NIR

image. The proposed system can dehaze and enhance im-

age details while maintaining the color fidelity and protect

privacy. By working in the radiance domain, the system

could handle large brightness differences among the color

and NIR images and achieve High Dynamic Range (HDR).

We proposed two methods to correct the fusion color: lin-

ear scalings when raw images were used and color swap-

ping with base-detail image decomposition in the presence

of nonlinearity in the ISP pipeline. The system also had two

clothing see-through prevention mechanisms to avoid ethi-

cal issue arising from the see-through effect of NIR image.

1. Introduction

Image Fusion is to combine the information from all

sources of images into one compact form of image. The

fused image contains more information than any single

source image. Image fusion from different sensory modal-

ities is even more challenging, because the images contain

different information, including colors, brightness, and de-

tails. There are literatures proposing algorithms for fusing

these images [21] [12].

One of the active research area is in fusing color im-

ages (RGB) with Near-Infrared images (NIR) [14][7][2];

the recent methods also include the use of Deep Learn-

ing [20][15][26]. Some would decompose the images

into bases and details [20][15][27] for fusion. [8] fused

RGB with NIR in various color spaces and performed psy-

chophysical evaluation on visual preferences. In general,

the aim is to increase the details of the color image from

the extra information of NIR while preserving the color and

brightness of the color image; simply, we want to have the

similar RGB look but with more detail enhancement from

NIR.

One of the most promising application of RGB-NIR

fusion is image enhancement, such as denoising[30] and

dehazing[13][27][6]. We also targets the image enhance-

ment problem under hazy weather conditions. One popu-

lar RGB-NIR dataset is development in [1], but there is no

raw domain dataset available to the best of our knowledge.

There are also works in dehazing using a single RGB color

image [4][9][29][10][28]. Also many of these dehazing

methods are effective, there are still issues to be addressed

before they can apply to practical use cases such as photog-

raphy on smart phones. One problem is that most existing

dehazing methods focus on reducing haze in the image to

the maximum extend, but may have negative image quality

impact, such as producing poor white balance or introduc-

ing false colors. More severely, fusing with NIR image can

potentially cause see-through effects. In this work, we de-

sign a complete RGB-NIR system to address such image

quality issues.

Another aim is to increase the dynamic range of the fu-

sion image to achieve High Dynamic Range (HDR) imag-

ing [31]. Many algorithms as quoted above are attempting

to find the optimum weights to assign to RGB and NIR for

combining the two together. However, the optimum weights

are difficult to be found especially if one image is dark while

the other is very bright, due to their differences in imag-

ing sensors, lens, filters, as well as camera settings such

as exposure time and gains. This brightness variation hap-

pens even when both RGB and NIR images are taken syn-

chronously on the same imaging device. Objects with the

same brightness and color within a captured RGB frame can

turn out to have very different brightness in NIR due to their

differences in reflection and scattering characteristics [16].

Many of the current image fusion methods can add de-

tails to the fusion image; however, the resulting color de-

viates from the original input color image’s and thus the

fusion image does not look natural or its color is just plain

2021



outright wrong. [24] fused RGB with multispectral images

to achieve higher resolution, we specifically fuse RGB and

NIR in the radiance domain to handle the wide brightness

differences in RGB and NIR and consequently also achieve

HDR. As far as we know, there was no previous work trying

to prevent clothing see-through.

In this paper, we also use Guided Image Filter [11] to

decompose RGB and NIR into bases and details so that we

can manipulate them separately and decide on the amount

of NIR to be added to the RGB for preventing clothing see-

through. The fusion image is then again decomposed and

swapped in the base of the decomposed RGB; the decom-

posed details of the fusion image are added back in. This

helps to maintain the original RGB color and at the same

time having all the details added from the NIR. In case there

are haze in the scene, the last step is to detect the haze zones

and adjust their pixels’ saturation for dehazing.

The way how we fuse the RGB with NIR has the follow-

ing characteristics:

i. Can achieve HDR in the radiance domain.

ii. Can manipulate the desired amount of details added

from NIR.

iii. Can prevent see-through clothing.

iv. Can maintain the original RGB image color.

v. Can dehaze.

2. System Overview

Our framework has distinctive modules that can control

image details, colors, dehazing, and clothing see-through

prevention respectively. This paper describes a system

methodology that can fuse RGB and NIR in the radiance

domain so that the large brightness differences among the

RGB and NIR images can be fused easily and HDR can

be attained. It also takes advantage of the Guided Image

Filter being able to decompose images into base and detail

parts; afterwards, we can recombine the parts that we care

for to form a new fusion image. The base-detail decompo-

sition/combination is used for clothing see-through preven-

tion and maintaining the original RGB color after fusing

RGB and NIR. A dehazing algorithm, such as “Localized

Auto White Balance” described here, can then be applied to

remove the haze from the final fusion image.

3. System Modules

Fig. 1 is a framework of how we implement a RGB +

NIR image fusion system. Firstly, we need to decide if

HDR is the desired effect. If yes, we need to precompute

the Camera Response Function (CRF) of RGB and NIR.

One notable algorithm for deriving the CRF is published by

[3]. The CRFs are for converting the images to radiance

domain for fusion and back to the image domain after fu-

sion. Details of radiance domain fusion pipeline is shown

Figure 1. A system flow of RGB and NIR image fusion

in Section 3.1. If HDR is not desired, we can skip the mod-

ules of “Precompute CRFs”, “Conversion to Radiance Do-

main”, and “Conversion back to Image Domain”. Note that

the input images can be in the raw or any format in the ISP

pipeline, although raw format is preferred.

The input RGB and NIR will go through the first mod-

ule of Geometry Manipulation that the resolution of RGB

and NIR need to be matched up using algorithm such as

Laplacian Pyramid and aligned/registered using algorithm

that can handle local adjustment [19][23]. Afterward, RGB

and NIR will be converted to the radiance domain if HDR is

desired, or they will be passed through as pixel values into

the base-detail decomposition module using Guided Image

Filter [11]. This module, described in Section 3.2, allows

us to control the amount of NIR details being added to the

RGB image. One possible application is to use this module

to control the clothing see-through effect of the NIR (see

Section 3.3). After the manipulation of NIR details, we re-

combine the bases and details to form a single fusion image.

This image is upscaled to the higher resolution of RGB or

NIR using Laplacian Pyramid. The fusion image now in-

cludes the details from the NIR.

The fusion image above, however, will have the color

that deviates significantly from the original RGB’s. The fu-

sion image will next go through a post processing module to

tune its color. The original RGB image is fed into the Tune

Color module as a reference image. Both the original RGB

image and the fusion image are decomposed into bases and

details. The fusion image’s base is then swapped out and

replaced with the original RGB image’s base. The details

of the fusion image are added onto the base of the original

RGB. Details can be seen in Section 3.4. This new fusion

image with the original RGB color, enhanced by the NIR

details, is subsequently fed into a dehazing module. The
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Figure 2. Left: Original RGB image. Right: Original NIR image

Figure 3. Fusing RGB and NIR images in the radiance domain

module will detect haze zones and adjusts their saturation

accordingly to remove the white cast/haze from the image.

One possible method is using our method as described in

Section 3.5. Going through the entire pipeline, a final fusion

image is produced with enhanced NIR details with original

RGB color and dehazed.

3.1. Color Image and Near­Infrared Image Fusion
in Radiance Domain

In Fig. 2, although the pixel values of the RGB and NIR

are different, the radiance value of a pixel of the same ob-

ject point in the scene should be the same. So, when we

can transform those pixel values back to their respective ra-

diance values, we can then combine them straightforwardly

by simply averaging their values. To recover the radiance

maps of RGB and NIR, we use the method published by

[3]. Since we just want to extract the details of NIR and

use those details to enhance the RGB, we convert the NIR

image into a grayscale image and fuse with the luminance

channel of the RGB (L of Lab color space). Afterward, the

luminance is combined with the color channels of RGB (ab

of Lab color space).

Fig. 3 shows the algorithmic flow and how the Camera

Figure 4. (a) RGB’s radiance; (b) NIR’s radiance; (c) NIR’s radi-

ance mapped to the range of (a); (d) Fusion image of (a) and (b);

(e) Fusion image of (a) and (c).

Response Functions (CRF) are used for converting the im-

ages from image domain to radiance domain and then back

to the image domain after fusion. CRF of RGB and NIR

can be pre-calibrated with multiple RGBs and NIRs taken

at various exposure times. The range of the radiance for cal-

ibration must be as large as our deployment range. Once the

CRFs are obtained, we can use them during the deployment

stage for fusing every captured RGB and NIR pair. Further-

more, we will need to derive a mapping function to establish

the relationship of the RGB’s and NIR’s radiances, due to

the fact that the radiances are in the relative scale and they

are from two different modalities. Note that if the CRFs

were pre-calibrated with a known radiance of the luminaire,

we can skip deriving the mapping function. The radiance

of either RGB or NIR with the lesser range will be mapped

into the range of the greater. Afterwards, both radiances can

be combined with a function as simple as averaging the two.

After fusing the radiances, the fused radiance values can be

transformed back to the image domain with the inverse of

the CRF (of L or Grey, depending on which path it takes).

The color channels a* and b* are then used for re-merging

with the greyscale pixel of either L or G path back to a color

fusion image.

Fig. 4 shows the radiances of RGB and NIR. RGB’s ra-

diance range is higher; the NIR’s radiance must be mapped

to the RGB’s. Without properly mapping the RGB and NIR

radiance values, when we fuse the two together, we will see

the bad fusion as in Fig. 4 (d) as opposed to the properly

fused image Fig. 4(e) .

Define RGB and NIR images as Ic and INIR, the fu-

sion weights at a pixel location (x, y) can be expressed as a

function of the image patches N around that pixel

w(x, y) = f(Ic(i, j), INIR(i, j)), i, j ∈ N, (1)

where f is a generic weight assigning function. If CRF is

not available and the fusion needs to be performed in the im-

age domain, we adopt an adaptive fusion rule developed in
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Figure 5. Fusing RGB and NIR images with base-detail decompo-

sition and color & details adjustments

[5] that assigns fusion weights for different pixel locations

to overcome the brightness differences of NIR responses,

especially for vegetation regions.

3.2. Base­Detail Decomposition and Combination

Fig. 5 is the flowchart of the algorithm for decomposing

the RGB and NIR images into their respective base and de-

tail parts. First, the RGB input image is converted to a color

space that we can extract its luminance channel; one such

space is L ∗ a ∗ b∗. If the NIR is already a monochrome

image, we can just feed the image directly into the mod-

ule. Guided Image Filter [11] is used for the decomposition.

The bases of RGB and NIR can be composed together with

the scale factors of φ and α. The scale factors control how

much of the pixel values are weighted towards the RGB’s

and NIR’s; this will affect the color appearance. Similarly,

the details of RGB and NIR can be composed together with

the scale factors of β and γ; this will affect the edge en-

hancement. Finally, the composed bases and details can be

recombined to form a new color fusion image.

3.3. Clothing See­Through Prevention

Due to the physical characteristics of the NIR wave-

length (650nm 1100nm), some material opaque to human

eyes may appear transparent in NIR wavelength. This see-

through effect when used for photography applications will

cause privacy concerns. To the best of our knowledge, there

has been very limited work addressing the clothing see-

through issue in RGB-NIR fusion. It is difficult to detect

and eliminate such issue using image processing methods,

Figure 6. Top row: full size NIR images captured with a man

standing at different distances (1 meter, 3 meters and 10 meters).

Bottom row: zoom-ins of the see-through area.

because the severity of see-through effect is correlated to

the object material rather than the color or intensity infor-

mation in the image domain. We have two different meth-

ods to prevent the clothing see-through issue: one is using

the derived depth from the input images; second is using

human detection coupled with Poisson Blending [25].

3.3.1 Depth-based

We observe that the see-through problem is mostly visible

in close-up shots and the severity decreases as objects move

farther away from the camera. Thus, we propose a depth-

based RGB-NIR fusion method that can prevent the cloth-

ing see-through effect. Fig. 6 shows the severity of clothing

see-through decreases as the distance of a standing man in-

creases. The text under the T-shirt is clearly visible in the

closeup shot at 1 meter, but it becomes less obvious as the

distance increases. The text becomes barely detectable at

around 10 meters.

Based on the observation of such relation between see-

through capability and distance, we propose a scene depth

based fusion method that will prevent close range objects

from having see-through problem. We use scene depth map

as a parameter in the weight assigning function during fu-

sion, equation (1) becomes

w(x, y) = f(Ic(i, j), INIR(i, j), D(i, j)), i, j ∈ N. (2)

where D(i, j) is the estimated scene depth value in a

neighborhood N of (x, y). Note that the scene depth D can

be the true distance of objects from the camera, or it can be

the disparity map of the scene, which is equivalent of know-

ing the absolute depth given the baseline of the camera sys-

tem and the camera parameters. When we can recover the

absolute depth of the scene, we design the weight assigning

function (2) as

w(x, y) = f(Ic(i, j), INIR(i, j)) ∗min(1, logp(max

(1, D(x,y)
DCutoff

))), i, j ∈ N. (3)

where Dcutoff is a depth threshold beyond which NIR

image is not capable of seeing through objects. The value of
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Dcutoff is dependent of the camera and lens specs, and we

obtain the value from experimental results. When the sys-

tem is unable to recover absolute depth, we use disparity to

derive the weighting function, and the design of the weight

assigning function (2) is given by

w(x, y) = f(Ic(i, j), INIR(i, j)) ∗ (1−

(
min(D(x,y),Dcutoff )

DCutoff
)p), i, j ∈ N. (4)

where Dcutoff is an experimented minimum disparity

below which the see-through problem is not visible for a

given NIR-RGB system, and p is a parameter what controls

how fast the fusion strength decreases with depth. Using

this fusion rule, we can avoid the see-through problem in the

scene in Fig. 6. The fusion result is given in Fig. 7. The dis-

parity map in Fig. 7 (b) is estimated using the MegaDepth

algorithm [17]. Fusion weights calculated by Eq. (1) and

Eq. (4) are shown in Fig. 7(c) and (d). The fusion weights

on the person’s body in Fig. 7(d) drops to nearly 0, effec-

tively stops the NIR image from introducing transparency

to the fused image. The fusion output in Fig. 7 (f)(h) are

clear of see-through problem, while maintaining the desired

fusion strength in the background regions.

3.3.2 Simultaneous See-Through Prevention and De-

ghosting with Poisson Blending

When fusing RGB with NIR, besides the aforementioned

clothing see-through issue, there also exists the typical im-

age misalignment ghosting issue associated with any multi-

image registration which is required for fusing multiple

images. There are numerous image registration or image

alignment algorithms [32]. Even the best available algo-

rithm cannot guarantee the non-existence of ghosts, partic-

ularly the close-up foreground objects are easy to exhibit

ghosting issue due to large visual disparity. Ghosts can

be detected and replaced with other pixel values to remove

them from the scene [22]. Here we describe a method which

can simultaneously remove foreground ghosts and prevent

the clothing see-through issue.

Given two input images, one being RGB another being

NIR, foreground objects or close-up humans are detected

on the original input RGB image, from which foreground

masks will be generated. Afterwards, the masks are dilated

to some predefined number of pixels; the number of pixels

can be defined as the largest disparity of the most forefront

object between the RGB and NIR images, provided that the

RGB and NIR sensors are mounted at a fixed location. The

bounding boxes of the dilated masks are then used for ex-

tracting image portions from the input RGB. The extracted

RGB’s image portions are used for recomposing a new NIR

by fusing them onto the original input NIR with Poisson

Blending [25]. The original RGB and the newly recom-

posed NIR are thereafter used for image fusion. The result-

ing fusion image will be free of both ghosts and clothing

see-through issue. The process is illustrated in Fig. 8.

3.4. Color Tuning

When the input images are raw format, the color correc-

tion can be as simple as using the scaling technique as in

Section 3.4.1. due to the linearity. Otherwise, when deal-

ing with non-linearity after the input images have been pro-

cessed through various operations in the ISP, the method in

Section 3.4.2. can be applied.

3.4.1 Color Correction using Raw Images

Fig. 9 shows that objects with strong IR emission are seen

much brighter in the NIR image than in the RGB image.

Objects in the scene with strong IR emission are the vegeta-

tion and the red road barriers. Thus, after fusing RGB and

NIR, the fusion image’s color will greatly deviate from the

RGB’s. A proper color correction algorithm will bring the

color fusion image back to the natural look. Fig. 10 shows

how the color can be corrected simply by adjusting the ratio

of R′ and B′ for every pixel.

3.4.2 Color Correction with Color Swapping

After fusing the color and NIR images, we decompose the

fusion image through a Guided Image Filter [11] into base

and detail parts; similarly, we decompose the original in-

put RGB image as well. The base of the input RGB image

bRGB can then be combined with the details of the fusion

image dfusion to form a new fusion image, which conse-

quently maintains the same base color as the original input

RGB image while having the newly added details of the fu-

sion image.

Note that the amount or strength of desired details can be

adjusted through dRGB and dfusion. These details amount

can be controlled through the parameters of the Guided Im-

age Filter.

3.5. Dehazing using Single Image Dehazing Method

If the color fusion image needs be corrected through

the color swapping method in 3.4.2., some of the white

haze would be added back into the fusion image. Conse-

quently, further dehazing would be necessary. There are

many available single image dehazing methods can be ap-

plied [4][9][10][28]. Here we describe a new single image

dehazing method.

3.5.1 Localized Auto White Balance (AWB)

Given a RGB color image with haze, in Fig. 11, the

haze zone(s) are detected. The haze zones are then passed

through a Localized AWB to saturate their lower-end of the

pixel values to which a specified percentage of pixels are
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Figure 7. (a) Input image; (b) Depth image; (c) Fusion weight map without depth; (d) Fusion weight map with depth; (e)(g) Fused image

using weight map (c) and the zoom-in region; (f)(h) Fused image using weight map (d) and the zoom-in region.

Figure 8. (a) Foreground mask derived from an imperfect depth

map; (b) Dilated foreground mask; (c) Cropped RGB correspond-

ing to yellow dashed box in (b); (d) Re-composed NIR; (e) Fused

image with de-ghosting and see-through prevention.

Figure 9. RGB image (a) and NIR image (b) of the same scene

have different visual characteristics including color, brightness and

details; (c) Fusion results of (a) (b) without color correction; (d)

Fusion results of (a) (b) with color correction.

subjected. The higher the specified percentage of subjected

Figure 10. The flow of color correcting a fused image of raw im-

ages

Figure 11. Flowchart of removing haze from any given hazy image

pixels, the greater the white cast or haze will be reduced.

The image after the Localized AWB is Poisson blended [25]

with the input RGB image to yield a dehazed image. If the

image is determined still having visible haze, it can be fed

back and continued to be dehazed again. Afterward, the fi-

nal dehazed image is produced. One example method for

detecting the haze zones can be found in [10], that can gen-

erate a transmission map; haze zones can thereafter be de-
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Figure 12. Fusion results on public dataset. Top row: input NIR images. Second row: Before and after fusion color images stitched side-

by-side. Left half is the input image and right half is the fusion result. Third and bottom rows: Comparisons between zoomed-in regions

(marked with red in the second row) of the input image and fusion output. The third row shows how well the fusion method preserves the

original colors of foreground regions. The bottom row shows the dehazing capability and details enhancement in background regions.

rived from the transmission map. Our Localized AWB is

modified from [18] that we only process the pixels, which

are classified within the haze zones indicated by the binary

haze-zone mask. Additionally, we saturate only the lower-

end pixels, but leave the top-end pixels alone so that the

bright pixels will not be clipped and such that the original

color temperature can be preserved.

4. Experiments

We conducted experiments on both public RGB-NIR

dataset from EPFL and our own dataset. For public dataset,

the fusion is done in image domain instead of radiance do-

main because no CRF is available. Some sample results are

shown in Fig. 12. As can be seen from the second row of

Fig. 12, our fusion system can achieve good haze removal

and detail enhancement, while preserving the color of non-

hazy regions at the same time. We also compare our results

to the recent de-hazing works from [13][27][6]. Note that

unlike most previous dehazing algorithms whose main ob-

jective is to reduce haze to the minimum level, the goal of

our fusion pipeline is to improve the overall image quality,

including dehazing, detail enhancement and maintain the

color accuracy after fusion. It can be seen from Fig. 13 that

while achieving comparable dehazing results, our method

can better maintain the original hue and color temperature.

On the other hand, the results from Feng et al. and Jang et

al., while effectively removes haze, significantly change the

color temperature of the original image.

We further validate our entire fusion pipeline with fusion

performed in the radiance domain using a dataset we col-

lected. We built a prototype capture system based on an off-

the-shelf smart phone. We replaced one of the camera mod-

ules with a 5M mono image sensor and installed a (750nm-

1100nm) pass filter in front of the camera. Such system is

viable for productization, because the sensor and filter we

selected are both commercially available and within the cost

range of comparable Bayer sensors used on nowadays smart

phones. We used the main camera of the smart phone (13M)

and the modified NIR camera (5M) as the capture system to

capture outdoor image pairs under various weather condi-

tions to test the proposed methods. We handle the resolu-

tion differences between the input images by decomposing

the images into Laplacian pyramids and perform fusion at

corresponding layers of the pyramids. Some examples are

shown in Fig. 14. The different columns demonstrate the

fusion results under different weather conditions. The first

two columns are scenarios with heavy haze, while the input

in the third and last columns have light and no haze respec-

tively. The results show that under heavy haze conditions,

the fusion pipeline can effectively remove haze, reveal de-

tails that otherwise would be invisible in RGB images, as

well as keep the color unchanged in the foreground areas.

For input pictures with little to no haze, the fusion results

can still enhance the details of the images and increase con-

trast of the image, especially in sky and far away areas.

2027



Figure 13. Comparison of our results with other dehazing methods based on RGB and NIR fusion

Figure 14. Fusion results on our own dataset. Top row: input NIR images. Second row: Before and after fusion color images stitched side-

by-side. Left half is the input image and right half is the fusion result. Bottom rows: Comparisons between zoomed-in regions (marked

with red in the second row) of the input image and fusion output.

5. Conclusion

We have developed a system which can fuse the RGB

with NIR with the following characteristics:

i. Can achieve HDR in the radiance domain.

ii. Can manipulate the desired amount of details added

from NIR.

iii. Can prevent see-through clothing.

iv. Can maintain the original RGB image color.

v. Can dehaze.

Our framework has distinctive modules that can control

image details, colors, dehazing, and clothing see-through

prevention respectively.

References

[1] Matthew Brown and Sabine Süsstrunk. Multi-spectral

sift for scene category recognition. In CVPR 2011,

pages 177–184, 2011.

2028



[2] David Connah, Mark Samuel Drew, and Gra-

ham David Finlayson. Spectral edge image fusion:

Theory and applications. In David Fleet, Tomas Pa-

jdla, Bernt Schiele, and Tinne Tuytelaars, editors,

Computer Vision – ECCV 2014, pages 65–80, Cham,

2014. Springer International Publishing.

[3] Paul E. Debevec and Jitendra Malik. Recovering

high dynamic range radiance maps from photographs.

In Proceedings of the 24th Annual Conference on

Computer Graphics and Interactive Techniques, SIG-

GRAPH ’97, pages 369–378, USA, 1997. ACM

Press/Addison-Wesley Publishing Co.

[4] Huang Dewei, Wang Weixing, Lu Jianqiang, and

Chen Kexin. Fast single image haze removal method

based on atmospheric scattering model. IFAC-

PapersOnLine, 51(17):211–216, 2018. 6th IFAC Con-

ference on Bio-Robotics BIOROBOTICS 2018.
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[32] Barbara Zitová and Jan Flusser. Image registration

methods: a survey. Image and Vision Computing,

21(11):977–1000, 2003.

2030


