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Abstract

Underwater image color correction has been gaining
traction due to its usage in marine biology and surveillance.
Color corrected images also help marine archaeologists in
locating objects. The underwater image suffers from vari-
ous degradation with respect to the depth at which the im-
age is taken. In this paper, we propose an alternate path
to correct the color of the underwater images. We address
the problem of underwater image color correction as a col-
orization task. For this purpose, we propose a deep learning
architecture that comprises of an ensemble encoder and a
decoder. The ensemble encoder part uses pre-trained net-
works to extract multi-level features. These features are
then fused together and are used up by the decoder to gen-
erate the color corrected output. We evaluate the perfor-
mance of our model using reference-based as well as no
reference-based metrics. The metrics indicate that the pro-
duced results are inline with the human perceptual system.

1. Introduction

Underwater image color correction has lately been the
attraction due to its usage in marine biology and underwa-
ter surveillance. The images taken underwater suffer from
color casts, noise, wavelength-dependent absorption, etc.
Usually, the red color gets absorbed first [16] as it has a
longer wavelength and lower frequency. The red color gets
absorbed fully at around 5m depth [27]. This is followed
by orange color, which vanishes at a depth of around 7-9m.
Then yellow gets absorbed around at the depth of 16-18m,
which is followed by green at a depth of around 28-30m.
Thus, images usually appear to be greenish or bluish. Since
the color disappears according to the depth, a color imbal-
ance is reflected in the captured underwater image. More-
over, the captured image suffers from different degradations
such as haze, noise, etc. due to scattering of light, non-
uniform illumination etc.

The prevalent underwater image enhancement methods
can be segregated into the following categories:
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Supplementary Information Based Methods: The
approach [23, 24, 25] relies on polarizing filters to improve
the degraded image. Specialized radiation hardware is also
employed to enhance the image.

Non-Physical Model-Based Methods: Igbal er al.
[14] work on stretching the pixel-values of non-dominant
channels with respect to the dominant channel values. The
intermediate output is then contrast corrected to get the
final enhanced image. Ancuti et al. [3] proposed to fuse
the contrast-enhanced image with a color-corrected image
in a multi-scale fusion to get an improved result. Ancuti
et al. [4] works in a two-step strategy where it combines
white balancing technique and image fusion. This helps
to compensate for the color caste while at the same time
enhancing the details.

Physical Model-Based Methods: These methods work
on the simple idea of “inverse”. Li ef al. [17] combines
color correction and image dehazing to improve the visual
quality of the degraded image. An algorithm is proposed
to estimate the background light along with estimating
medium transmission characteristics. Some researchers
also employed optical properties of imaging in underwater
environments. Carlevaris-Bianca et al. [5] exploits the
difference in attenuation between color channels to estimate
depth. It models the true scene as a Markov Random Field.

Data-Driven Models: With the onset of deep learning,
the trend has shifted towards making end-to-end architec-
tures for underwater image enhancement. For example, Li
et al. [19] proposed WaterGAN, which works on genera-
tive adversarial networks along with a color restoration net-
work. Li et al. [16] proposed WaterNet, which employs
a gated fusion architecture. It works by combining the
gamma-corrected image, histogram equalized image, and
the white balanced image. The gamma correction and his-
togram equalization improves contrast and lighten up the
darker regions. The white balance helps in correcting the
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color casts.

In general, the deep learning approaches try to modify
the input raw underwater image according to the respective
reference image during training. The objective is to mini-
mize the error between the ground truth and the predicted
output. At testing, no reference image is required.

However, we tackle the task of underwater image color
correction differently. Cheng et al. [7] handles the col-
orization task using an ensemble of neural networks as a
single neural network is not complex enough to tackle it
alone. Cheng et al. [6] works by finding a very similar
reference image for the image that needs to be colorized.
We take inspiration from the model proposed by Li et al.,
WaterGAN/[19], which modifies the color of an underwater
image to an image that is taken in a natural setting. We also
produce similar results but rather than modifying the RGB
image, we handle this task as the conversion of grayscale
image to colored one, i.e image colorization using DCNN.
This approach yields results that contain natural colors. We
start by converting RGB image to Lab colorspace and ex-
tract the L channel which is fed to the encoder as input.
Ensemble encoder extract multi level features ranging from
fine to coarse. These features are concatenated and then fed
to the decoder which predicts the ab channel as the output.

The main contributions of the paper are:

» Exploring the underwater image color correction prob-
lem as a colorization task.

 Extraction of multi-level features using a pre-trained
ensemble of CNNss.

* Evaluation of model with reference (PSNR & SSIM)
and no-reference (UCIQE & UIQM) metrics.

The organization of our paper is as follows : Section 2
explains the optimal choice of color space, Section 3 pro-
vides the details of our architecture in detail. Experimen-
tation and implementation details are laid out in section 4
along with the discussion of the results. The paper is then
concluded in section 5.

2. Color Space

The most commonly used color spaces are RGB, YCbCr,
Lab, etc. Every color space represents color differently.
Hence, the choice of a particular task may affect the per-
formance. For colorization task, RGB doesn’t seem to be
the appropriate color space as the model will have to pre-
dict all three channels. Whereas colorspaces like YCbCr
and Lab which stores color information and luminance in-
formation separately requires the model to predict only two
channels to colorize the grayscale image. Thus, decreasing
the dimensional complexity. Among these two, Lab color
space is optimal as it encompasses a wide range of colors.

Most of the deep learning techniques [20, 26, 29, 30] in
the image colorization domain have worked upon CIE Lab
color space. The color space is segregated into the follow-
ing components :

* L* (Lightness) component.
* a* (ranges from green to red) component.

* b* (ranges from blue to yellow) component.

The L* component ranges from O to 100, i.e., from black to
white. The a* component has green on the negative axis and
red on the positive axis. Similarly, the b* component has
blue on the negative axis and yellow on the positive axis.
Channels a and b ranges from -128 to +127. The center
or the zero represents the grey color. Here the grayscale
image acts as the L channel, which is fed to the network as
input. The network is then required to predict the other two
channels.

3. Proposed Approach

The proposed approach is unique in terms of tackling the
problem. This is due to the reason that we are not using the
Underwater Image Enhancement Benchmark (UIEB)[16]
dataset for training. We have modeled this problem in an
image colorization manner. The model is trained on the
DIV2K][1, 2] dataset. The reason for doing this is once our
model gets trained on the DIV2K dataset, the output pro-
duced will contain natural colors rather than bluish/greenish
colors. So we train our model to predict natural colors in or-
der to color the underwater images. This is the unique take
on the problem.

In this section, we discuss the data pre-processing steps,
the network design and the associated training parameters.

3.1. Data Pre-Processing

The DIV2K]1, 2] dataset comprises 800 high-definition
training images. We start by extracting patches of size
224 x 224, as this is the desired size required by the pre-
trained ensemble encoder. The reason for extracting patches
is inclined towards the idea of minimizing the loss of infor-
mation. If down-sampling would have been done, loss of
information would have happened. These patches are then
converted into Lab colorspace. After the transform, the L
(luminance) component ranges from 0 to 100, while the ‘a’
and ‘b’ color components range from -128 to +127. In or-
der to make these uniform, normalization is done. After
normalization, the L (luminance) component ranges from O
to 1, and the ‘a’ and ‘b’ color components range from -1
to +1. This normalization also boosts up the training and
eradicates the exploding gradient problem. The L channel
is then extracted and stacked three times before feeding to
the ensemble encoder.
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Figure 1. Proposed ensemble encoder-decoder architecture. Multi-level features are extracted at the ensemble encoder part. These
features are then fused together. The fused features are used by the decoder to predict the ab channel.

3.2. Ensemble Encoder Design

Ensemble of  pretrained  ResNet50[12] and
DenseNet121[13] networks without Fully Connected
(FC) layers are used as encoder. Grayscale input image
(size - H x W x 3) will be given to each of the networks
separately. After analyzing features extracted at each layer
of CNN, we divide the network into different stages based
on intermediate layers features shape. Multiple features
of the image will get extracted from each stage of single
network. Following are the networks we used in encoder
design:

* DenseNetl121[13] - It is a densely-connected convo-
lutional network which use dense blocks in its archi-
tecture to improve features propagation and to address
the vanishing gradient problem. Based on the output
size of dense blocks, we can divide DenseNetl121 in 4
stages. We extract feature maps after dense block 1 of
size 56 x 56, dense block 2 of size 28 x 28, dense block
3 of size 14 x 14 and dense block 4 of size 7 x 7.

e ResNet50[12] - It is a CNN architecture with skip con-
nections between layers which helps in training very
deep networks without facing the degradation prob-
lem. Resnet50 contains 5 stages each with a convo-
lution and identity block which have different output
sizes. We have extracted convolution layer output of
different sizes - 56 x 56, 28 x 28,14 x 14 and 7 x 7,
to get fine to coarse feature maps.

After extracting level wise features, we have level 1 features
of size 56 x 56, level 2 features of size 28 x 28, level 3
features of size 14 x 14 and level 4 features of size 7 x 7
from each network.

3.3. Fusion Strategy

Multi-level features coming from the ensemble encoder
part need to be fused keeping in mind the dimensions asso-
ciated with them. We have used concatenation as the feature
fusion strategy. Before applying the fusion function, we
perform a 1 x 1 convolution operation as a size transforma-
tion function on input feature maps to have a similar number
of channels. So our fusion function can be generalized as
Y, Y, Y, — Y, where Y1,Y5,...Y,, are feature
maps from Networky, Network,, ....Network,, respec-
tively. As we have only two networks in ensemble, fusion
function f*generates output feature map

YV* e RH*XW*XD*
by fusing
Yl c RHXWXD/and Y2 c RHXWXD/

Here, the number of channels D’ is the output of the number
of channels of feature maps after applying the size trans-
formation function. Concatenate fusion function concate-
nates the input feature maps at dimension D, so D* =
D'+ D%+ ...+ D", and

y concatenate _ Y1||Y2||||Yn

3.4. Decoder Design

The decoder design consists of a series of bottleneck and
decoder blocks. The bottleneck block consists of multiple
convolutional layers and batch normalization layers. ReLU
has been used as the activation function. The bottleneck
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Figure 2. Underwater Color Correction Visual Results with Non-Overlapping Patches. The top row and the second row contains the
raw underwater images and their respective color-corrected reference images. The third row contains the input that is fed to the model. The
last row contains the output generated by our model along with the respective scores.

blocks help to get the representation of the input in reduced
dimensionality. The decoder blocks are made up of convo-
lution layer, batch norm layer and upsampling layer. The
last decoder block is different from the rest as it uses TanH
as the activation function. As TanH is used at last, the out-
put produced is in the range of [-1,1]. All the blocks re-
ceive input from the previous blocks. In addition, the bot-
tleneck blocks receive respective fused features from the fu-
sion block as the skip connection. These skip connections
help to strengthen the information flow and also mitigates
the issue of vanishing gradient. Finally, the predicted ab
channel is integrated with the L channel to get the desired
output.

3.5. Loss Function and Training

The encoder module uses pre-trained networks. Their
weights are freezed during the training so no weight upda-
tion takes place. Now, as only the decoder part needs to be
trained, it significantly expedites the training process. The
predicted ab channels are compared with the ground truth ab
channels using Mean Square Error(MSE) as the loss func-
tion. Adam optimizer is used to handle the optimization

part. The learning rate is set to 0.001, along with the batch
size of 8. The network is trained for 45 epochs where 1
epoch took around 3 hours to finish.

4. Experiment
4.1. Dataset

Deep learning requires a large-scale database to make the
model work, but the generation of color corrected images
from underwater images is a manual and time-consuming
task. The dataset Underwater Image Enhancement Bench-
mark Dataset (UIEB)[16] has been generated by showing
the users a variety of color-corrected images. The dataset
comprises of 950 real underwater images, out of which 890
have reference images, and the rest 60 images are consid-
ered the test images.

However, as we have modeled the problem differently,
we have used the DIV2K][1, 2] dataset as the training
dataset. It has 800 high-definition RGB images for train-
ing and 100 images for validation. For testing our model,
890 training images and 60 testing images from the Under-
water Image Enhancement Benchmark Dataset and Beyond
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Figure 3. Underwater Color Correction Visual Results with Overlapping Patches. The top row and the second row contains the raw
underwater images and their respective color-corrected reference images. The third row contains the input that is fed to the model. The last
row contains the output generated by our model along with the respective scores.

are used.

4.2. Implementation Details

The network, as stated above, is trained upon the DIV2K
dataset. We start by extracting patches of size 224 x 224
with a step size of 1.0. The step size of 1.0 indicates that
there are no overlapping patches. These patches are then fed
to the ensemble encoder part, and the decoder part predicts
the output. At the time of testing, we extract patches of the
same size but with an overlap of 25%. This is done as the
UIEB dataset has majority of images which contains tiny
objects, and, hence artifacts are observed in the results. On
the contrary, the DIV2K dataset does not contain a lot of
images with tiny objects. The overlap portion is averaged
out at the end.

4.3. Results

We started out by testing the model on the UIEB train-
ing dataset. The grayscale patches of 224 x 224 are given
as input to the model. For the initial testing of the model,
non-overlapping patches are used. The results are shown in
Fig. 2. As expected, the underwater greenish/bluish color

has been replaced with natural colors. The final result suf-
fers from artifacts when there are too many small objects
present. In this case, the model is not able to give out a
clear distinction between those objects.

To overcome the artifacts issue, we use overlapping
patches with an overlap of 25%. The overlapped portion
is then averaged out at the end during the reconstruction of
the full image from the patches. The results generated by
overlapping patches are shown in Fig. 3. It is seen that the
artifacts that were present have now been significantly re-
duced due to overlapping patches. The averaging operation
on the overlap part helps to reduce the colors that are seen
on the leftmost and rightmost part of the axis. The bottom
right image in Fig. 2 shows color patches which are seen
on the leftmost and rightmost part of the axis of a’ and ’b’
channel, while with overlapping patches these kind of col-
ors are averaged out as seen in Fig. 3. The model is able to
give out results as if the images are taken in a natural setting.
These results can be helpful during underwater surveillance
as they will help to identify objects quickly. More visual
results are shown in Fig. 4.

In the Fig. 5, all the underwater images have almost the
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PSNR :21.53 PSNR:18.12 PSNR:11.69 PSNR:21.10
SSIM : 0.92 SSIM : 0.87 SSIM : 0.54 SSIM : 0.90
UCIQE : 0.50979 UCIQE:0.59913 UCIQE : 0.55406 UCIQE : 0.58629

Figure 4. Underwater Color Correction Visual Results with Overlapping Patches. The top row and the second row contains the raw
underwater images and their respective color-corrected reference images. The third row contains the input that is fed to the model. The last
row contains the output generated by our model along with the respective scores.

UCIQE :0.55482 UCIQE:0.49688 UCIQE:0.49394 UCIQE:0.52363 UCIQE:0.54634

Figure 5. Underwater Color Correction Visual Results. The top row contains the underwater raw images. The middle row contains the
the images given to the model as input. The bottom row contains the outputs produced by the model. These results are obtained on the
UIEB[16] test dataset. The input images have the same color tone for the background and the objects present, while the output produced
shows better differentiation.
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UCIQE:0.52329

UCIQE : 0.56524

UCIQE : 0.48801 UCIQE: 0.56173

Figure 6. Underwater Color Correction Visual Results. The top row contains the underwater raw images. The middle row contains the
the images given to the model as input. The bottom row contains the outputs produced by the model.

same color tone. There is little to no difference between
the color tone of different objects present in the image.
Whereas the outputs produced by our model show better
differentiation among the objects. Hence, the task of locat-
ing objects becomes convenient.

The last column of Fig.6 contains non-uniform illumi-
nated underwater image. The Fig.7 shows visual results of
our approach along with other approaches like ARC[11],
DBL[18], UWCNNTJ15] and WaterNet[16]. ARC tries to re-
cover color for shorter wavelengths. In column 2, it can be
seen that all the different approaches, except WaterNet[16],
produce results that have little or no change compare to the
raw underwater image. The color tone of the whole im-
age is the same. The same is seen for other results as well.
This is not the case with our result. The fish and its sur-
roundings are colored differently showing a visible differ-
entiation. In the last column, UWCNN][15] has produced
an abrupt yellow-green color which is nowhere to be seen
in our results. This in turn makes our results more suitable
for object localization.

The metrics used to evaluate the results broadly fall into
two categories: Reference-based and No reference-based

Reference-based: PSNR and SSIM are the standard
reference-based metrics. The table 1 shows the PSNR and
SSIM values obtained on the UIEB training set. The reason
for low PSNR and SSIM is that our model has been trained
on the DIV2K dataset which does not contain any degrada-
tion, so the model does not do anything specific to handle
the degradations present. Hence, a low PSNR and SSIM is
the expected output.

No Reference-based: UCIQE (Underwater Color Image
Quality Evaluation metrics) [28] and UIQM [21] are used

Metric | Value
PSNR | 16.31
SSIM 0.76

Table 1. Reference-based metrics results on the UIEB training set
used as testing set.

Methods UCIQE | UIQM
Fusion-based [3] 0.6414 | 1.5310
Two-step based [9] 0.5776 | 1.4002
Retinex-based [10] 0.6062 | 1.4338
UDCP [8] 0.5852 | 1.6297
Regression-based [17] | 0.5971 | 1.2996
GDCP [22] 0.5993 | 1.4301
Ours 0.5013 | 3.3363

Table 2. No reference-based metrics results on the UIEB training
set used as testing set.

to evaluate the quality of underwater images. A high value
of UCIQE indicates the result is highly color balanced in
terms of saturation, chroma, and contrast. Similarly, a high
value of UIQM suggests that the results are more in line
with the human visual system. The table 2 shows the UIQM
and UCIQE values obtained on the UIEB training dataset.
It is seen that our model is able to perform better than all
the listed approaches with respect to UIQM metric. This
indicates that the results are significantly are in the line with
the human perceptual system.

The average UCIQE and UIQM scores obtained on the
UIEB testing set are 0.4735 and 1.9006, respectively. The
visual results on the UIEB test dataset are shown in Fig. 5
and 6. The results depict that although the images have been
color corrected in a way that they are captured in a natural
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Figure 7. Visual Results Comparison with Different Approaches on the UIEB Dataset. The top row contains the raw underwater
images. Various other rows contains results of the respective approaches and the last row contains the results obtained by our approach.

surrounding but the degradations like blurring, haze, etc., problem. The obtained results show better differentiation
are still there. between the background and the different objects present in

the image. The UIQM score justifies that the results ob-
5. Conclusion tained are inline with the human visual system. This can

be useful for underwater archaeologists as the results will

In this paper, a simple ensemble encoder-decoder based decrease the complexity of locating an object

colorization network has been laid out. The colorization ar-
chitecture is used to handle the underwater color correction
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