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Abstract

Attribute image manipulation has been a very active
topic since the introduction of Generative Adversarial Net-
works (GANs). Exploring the disentangled attribute space
within a transformation is a very challenging task due to
the multiple and mutually-inclusive nature of the facial im-
ages, where different labels (eyeglasses, hats, hair, identity,
etc.) can co-exist at the same time. Several works ad-
dress this issue either by exploiting the modality of each
domain/attribute using a conditional random vector noise,
or extracting the modality from an exemplary image. How-
ever, existing methods cannot handle both random and ref-
erence transformations for multiple attributes, which limits
the generality of the solutions. In this paper, we success-
fully exploit a multimodal representation that handles all
attributes, be it guided by random noise or exemplar im-
ages, while only using the underlying domain information
of the target domain. We present extensive qualitative and
quantitative results for facial datasets and several differ-
ent attributes that show the superiority of our method. Ad-
ditionally, our method is capable of adding, removing or
changing either fine-grained or coarse attributes by using
an image as a reference or by exploring the style distribu-
tion space, and it can be easily extended to head-swapping
and face-reenactment applications without being trained on
videos.

1. Introduction
In this paper we tackle the problem of adding, remov-

ing, or manipulating facial attributes for either exemplar im-
ages or random manipulations, using a single model. For
instance, given a person A, our system could aim at im-
posing the haircut of person B, eyeglasses of person C, hat
of person D, earrings of person E, and randomly changing
the background and the color of the hair. Particularly, the
problem of manipulating multiple attributes has been coined
‘multi-domain image-to-image (I2I) translation’ [23, 7, 30].

Image-to-image translation methods have been tradition-
ally categorized into two groups: latent and exemplar ap-

Figure 1: SMILE learns a diverse manipulation for multi-
ple attributes using a single generator. We do not use direct
supervision as we simplify the problem using semantic seg-
mentation manipulation as an intermediate stage. First, we
manipulate eyeglasses, hair, earrings, and hat shapes from
reference images on the semantic space (bottom right cor-
ner). Second, we impose the style of the reference attributes
onto the manipulated semantic in order to synthesise the
RGB output. Zoom in for better details.

proaches. Latent approaches [46, 2, 6] require sampling
from distribution in order to perform a cross-domain map-
ping, that is, to explore the underlying latent distribution
and produce a plurality of representations given a single in-
put. Conversely, exemplar-based approaches [37, 40, 10] re-
quire an additional image to condition the generation. There
have been some efforts [14, 21, 8] trying to reconcile latent
and exemplar approaches in a single and unified system.
However, they consider domains with big gaps such as dif-
ferent kinds of animals, weather conditions, or male/female
facial transformation.

Regarding facial manipulation, I2I translation ap-
proaches come with the additional constraint that some re-
gions of the image (e.g., background, clothes) or fixed char-
acteristics of the face (e.g., eyeglasses, hats) should re-
main unaltered during the transformation. Vanilla Cycle-
GAN [45]-based approaches traditionally alter the general
content and shift the colors of the input. To overcome this
undesired property, latent generative approaches [23, 11,
38] have proposed attention mechanisms [29], performing
architectural changes and introducing tailored loss func-
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tions into the training framework, thus obtaining impres-
sive results. Nevertheless, the transformations are mostly
fine-grained and do not perform well for more global trans-
formations such as a female to male, or short to long hair.
Reference guided methods [44, 4, 39], on the other hand, ei-
ther work on low-resolution scales or focus on local texture
transformation. Recently, StarGANv2 [8] was proposed as
a variant for multi-domain I2I translation. Nonetheless, it
requires that the multiple domains are not activated at the
same time and it does not perform well for fine-grained
transformations.

In order to solve the aforementioned issues, we pro-
pose Semantically-guided Multi-attribute Image and Lay-
out Editing (SMILE). With SMILE, we split the solution
of this problem into two stages. We propose to introduce
a segmentation space as an intermediate space between the
high-level attribute semantic space (e.g., eyeglasses, hair,
hat) and the high-informative RGB image space, where in-
stead of dealing with complex general and local transforma-
tions in the RGB space. First, we manipulate the semantic
space according to the desired attributes, namely semantic
manipulation. Second, we transform such semantic manip-
ulations to photo-realistic RGB faces, namely image syn-
thesis.

We enumerate our contributions as follows:

1. We propose a multi-attribute I2I transformation
method for both fine-grained and more global at-
tributes in the semantic space for both random and
exemplar-guided synthesis.

2. We propose an extended version of StyleGAN2 [16]
to deal with semantic masks and per-region-styles to
perform random or exemplar-guided synthesis.

We depict diverse facial manipulations in Figure 1, and
an overview of our system in Figure 2. Code source and
pre-trained models will be released.

2. Related Work
Recently, Image-to-image (I2I) translation has become

a very active topic thanks to the impressive advances in
generative modeling methods, and in particular, Genera-
tive Adversarial Networks (GANs) [9]. Several novel and
challenging problems have been successfully tackled with
this technique, e.g., multi-domain manipulation [7, 30],
style transferring [13, 22], image inpainting [41, 26], im-
age synthesis using semantic segmentation [27, 47, 20], im-
age content manipulation [28], exploratory image super-
resolution [24, 5].

2.1. Facial Attribute Manipulation

Since the face is one of the most common, yet interest-
ing models, facial image editing has gained traction over

the years [35, 34, 3]. Different works [7, 29, 19, 10]
have included facial attribute information as conditions in
GANs to manipulate eyeglasses, mouth expression, hair,
and other attributes with remarkable results. Due to the
mutually-inclusive representation of facial attributes, i.e.,
different attributes can co-exist at the same time, multi-
domain methods have received more attention as a unified
and flexible way to deal with several domains. Neverthe-
less, modeling each attribute as a domain requires having
a fully disentangled understanding of each attribute. Al-
though multi-attribute latent manipulation has been widely
studied [7, 11, 30, 42, 29, 19], multi-attribute exemplar at-
tribute imposition has been less studied [10], and the com-
bination has not been achieved yet.

Multi-attribute facial exemplar manipulation refers to ex-
tract some specific information from person A’s face and
impose it on person B’s face, e.g., make-up, eyeglasses,
smile, hair. There are traditionally two different groups
of methods doing this: makeup transferring [6, 37] and
attribute manipulation [44, 4, 25, 39, 40, 10]. Make-up
transferring methods focus on localized texture mappings,
whereas attribute imposing methods are traditionally mod-
eled as binary problems using the presence or absence
of a selected feature. While the former allows for high-
resolution transformations and require exemplar images, the
latter normally operate at low resolution due to the intri-
cate representations of multiple attributes in the RGB space,
which traditionally operates at one model per domain.

Recently, StarGANv2 [8] has been introduced as an al-
ternative for multi-domain facial attribute manipulation for
both random sampling and reference guidance. Nonethe-
less, as we discuss in Section 4 the generalization capabil-
ities of StarGANv2 are compromised when training with
different and/or additional domains to Male/Female, and it
also wanting when it comes to fine-grained transformations.

There is a common issue among the above-mentioned
methods. When including several exemplar attribute manip-
ulations that can co-exist at the same time, they struggle due
to the inherent lack of exemplar supervision, i.e., there is the
only access to presence and absence of attributes in a high-
level manner, which is the reason this problem is tradition-
ally simplified by using one manipulation and one model at
a time [44, 4, 25, 39, 40] or to operate at a low-resolution
scale including several domains [10]. In contrast to pre-
vious works, we leverage the high-level semantic space to
manipulate the high-informative RGB of attributes, which is
a much easier space that allows us to manipulate either fine-
grained or coarse attributes in a higher resolution space, so
we can manipulate only the shape of the attribute, and trans-
forming it into a specific style using a semantically guided
RGB synthesis. Furthermore, our method combines the best
of the two worlds by either using specific attribute impo-
sition from exemplar images or exploring the latent space
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using a fully disentangled representation.

2.2. Semantically-guided manipulation

Using semantic information for image synthesis is an
emerging field, in which using semantic segmentation as
input, aims at producing an RGB image that perfectly re-
sembles the semantic regions in the input. Semantic manip-
ulation allows finer control of the resulting image just by ad-
justing the input. To this end, inspired by pix2pixHD [36],
SPADE [27] introduced a specialized and spatially driven
normalization block in order to deal with the different
masks in an up-sampling manner, producing impressive re-
sults for high-resolution synthesis. However, one critical
issue about SPADE is the lack of control for each resulting
semantic region. Recently, SEAN [47] and MaskGAN [20]
modeled independent style representations for each seman-
tic region, and in the same vein as SPADE, they introduce
the semantic and style information combined in a W space
distribution through adaptive normalization layers in the
generator. It is worth mentioning that both SEAN [47] and
MaskGAN [20] require an exemplar image to perform the
generation, and this is particularly critical for attribute im-
position as we would like to generate new content (e.g., hat,
eyeglasses) that can be hard to find in a dataset. Note that
we refer to image manipulation as manipulating an existing
image rather than hallucinating it as in vanilla GAN-based
methods [27, 16].

SMILE is akin to both SEAN and MaskGAN, yet by
leveraging StyleGAN2 [17] we extend the W latent dis-
tribution towards virtually any kind of style per semantic
region. We accomplish this by replacing the normalization
layers in the generator with semantically adaptive convolu-
tions (SACs), and by using an alternative training scheme
for both random generation (similar to StyleGAN2) and
exemplar-guided generation (similar to SEAN).

3. Proposed Approach
Our main objective is to perform specific or global style-

guided transformations using only the domain information
as supervision. We argue that multi-domain exemplar style
imposition (e.g., wearing someone else’s sunglasses or hair
replacement) is a very challenging problem, which nor-
mally is simplified by assuming mutually exclusive do-
mains [8], or one model per domain [4]. To this end, with-
out simplifying this problem and inspired by recent devel-
opments in image synthesis [17], we develop our strategy
in two stages: Semantic Manipulation (SMILESEM) and
Region-wise Semantic Synthesis (SMILESYN).

We assume we have access to facial images, with their
respective semantic segmentation, where each semantic re-
gion corresponds to a part of the face (e.g., eyeglasses, eyes,
mouth). First, we manipulate the semantic information, i.e.,
the shape of each attribute, with high-level attribute infor-

Domain-
Specific

Style

Eyeglasses, Hair

Style Matrix:
Skin,

background, etc

Style matrix:
Hair and

eyeglasses.

Semantic Manipulation Image Synthesis

Semantic Generator (𝔾)

Semantic Style Encoder (𝕊)

Semantic Mapping (𝔽 )

Synthesis Generator (G)

Synthesis Style Encoder (S)

(SMILESEM) (SMILESYN)

Figure 2: Overview of SMILE. We translate an image by
either taking as input a random style or target attributes into
the generator (we use a reference image in this example).
We first manipulate the shape of the attribute by using a
semantic segmentation map (left), and then we synthesize
the style of each semantic region by using both input and
reference styles to produce a photo-realistic merge of the
two images (right). Our proposed approach SMILE is an
ensemble SMILESYN ◦ SMILESEM.

mation extracted either from a different semantic person or
sampled from the distribution. In Figure 2 left, eyeglasses
and hair shapes are extracted from the semantic reference.
Second, we use the manipulated semantic information to
transform it into RGB space, namely, style synthesis. For
each semantic region, we extract the RGB information ei-
ther from an exemplar image, from the original input, or
sampled from the distribution. In Figure 2 right, eyeglasses,
and hairstyles from the reference image are combined with
the skin, mouth, and background from the original input.

3.1. Semantic Manipulation (SMILESEM)

First, we build a simple yet powerful multi-domain I2I
translation model using the semantic map. We rely on the
semantic information as it is simpler and rich enough to spot
and transform noticeable facial attributes like eyeglasses,
hats, earrings, hair, bangs, and identity.

We build on top of StarGANv2 [8], and as depicted in
Figure 2 (left), our system is composed of several networks:
1 semantic generator (G), 1 semantic mapping network (F)
to map from a noise distribution to a shared latent space,
and 1 semantic style encoder (S) to map reference images to
shared latent space. In order to perform unsupervised fine-
grained and more global translations, we rely on several key
assumptions as follows.

3.1.1 Model

We model the semantic manipulation as a problem of
Image-to-Image translation, where the input and output are
semantically segmented faces with access to binary attribute
annotations, and the mapping function is G.

Let X r ∈ RH×W×M be the real image with M seman-
tic channels, for instance a mask with a parsing of the face
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where each channel represents different regions. Each im-
age X r has associated N binary attributes yr ∈ N{0,1} :
{yr0, · · · yri , · · · yrN−1}, for instance wearing eyeglasses or
not, wearing a hat or not. Importantly, as each attribute can
have virtually countless appearances, this ground-truth in-
formation is unknown.

By using self-supervision we can extract each attribute
style representation from the real image, that is, we assume
that for each possible attribute yr in a real image X r, there
is one style associated sr ∈ RS : {sr0, · · · sri , · · · srN−1}.
For instance, for any given facial image xi that has 4 bi-
nary labels yi = (1, 1, 0, 1), then each present attribute
can have different shape, color, and appearance, namely
style, so there is one style vectors per attribute (⟨si⟩): si =
(⟨s0⟩, ⟨s1⟩, ⟨s2⟩, ⟨s3⟩), that is, one latent representation for
each label. Note that we assume that the absence of an at-
tribute is also associated with a style distribution, and not as
a deterministic zero vector. For instance, for the absence of
black eyeglasses, there must be a style that hallucinates the
region around the eyes.

Our purpose is to use the domain information as guid-
ance for the style imposition. Particularly, for each domain
we assume, a style distribution associated with the presence
of it and a different style distribution associated with the
absence of it.

Moreover, we can perform transformations (X̂) in both
directions: using an image as a reference by extracting the
style from the style encoder (S), and similarly, sampling
from the style distribution and processing it through the
mapping network (F). Formally, we define these two trans-
formations in Equation 1 and 2, respectively.

X̂guided = G(Xr, S(Xref )ŷ) (1)

X̂random = G(Xr, F(N (0, I))ŷ), (2)

Where N (0, I) is a random vector sampled from the normal
distribution. This is possible by assuming a shared latent
space. Note that these transformations require the selec-
tion of the presence or absence of domains (ŷ) in each style
mapping S and F.

3.1.2 Training Framework

In this section, we explain in detail our method to work with
either inclusive or exclusive domains, and also fine-grained
or coarse transformations.

First, as each domain has two style distributions, we use
the domain information in form of multi-task learning to
inject the desired style representation into the generator.
The resultant style is a weighted concatenation of all the
attributes. Second, we replace the AdaIN and convolution
layers with modulated convolutions [17], and we discuss
this architectural change in Section 4. Third, we propose a

novel training scheme critical for the success of the training
stability.

During the forward pass, we first sample a noise vector
(N (0, I)) and randomly sample real domain labels (ŷ) to
generate a mapping latent vector (ŝ), which is fed to the
generator. The random style is defined in Equation 3:

ŝ = F(N (0, I) )ŷ (3)

For the Discriminator, Mapping Network, and Style en-
coder, we use multi-task learning on the active domains and
ignore the optimization for the zero-domain vectors.

Fake images are produced as x̂ = G(x, ŝ). In contrast to
StarGANv2, we only require one reconstruction step. We
define the style reconstruction loss in Equation 4:

Lsty = min
G,S

[
∥ŝ− S(G(x, ŝ))ŷ∥1

]
(4)

To further encourage diversity across the transforma-
tions, we follow the same pixel-wise style diversification
as in StarGAN2. See Equation 5 for the style diversification
loss.

Lsd = max
G

[∥G(x, ŝ))−G(x, ŝ′))∥1] (5)

The key ingredient to stabilize our system relies on the
reconstruction loss. As we are only learning S parame-
ters using Equation 4, and we need to align the style en-
coder for both real and fake images, for the reconstruction
loss we simply detach the weights from the graph. With
this strategy, we force the two distributions S and F to be
aligned. We found this trick to be crucial in the overall
training framework. Therefore, the real style has the form of
s̃ = detach(S(x)yr ), and we define this loss in Equation 6.

Lrec = min
G

[∥x−G(G(x, ŝ), s̃)∥1] (6)

As it is common for adversarial approaches, we use the
adversarial loss (Ladv) to produce photo-realistic images.
We follow the same adversarial loss and regularizer as in
StarGANv2. Our full loss function is defined in Equation 7.

L =Ladv + λrecLrec + λstyLsty + λsdLsd, (7)

where λ represents the relative importance of each part
within the system.

3.1.3 Experimental Setup

We build our system for 256 × 256 image size. For all our
experiments we set λrec = 1.0, λsty = 1.0, and λds =
20.0. We train our system during 200,000 iterations using
a single GPU Titan Xp with a batch size of 6, and Adam
Optimizer [18].

Please refer to the Supplementary Material for more de-
tails about the networks.
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3.2. Improved Semantic Image Synthesis
(SMILESYN)

In order to map from semantic regions to an RGB im-
age, we use our semantic guided image synthesis method
to perform the corresponding generation either by using an
exemplar image or exploring the latent space.

Current methods [35, 34, 1] that use StyleGAN [16] for
image manipulation, latent disentanglement, or image pro-
jection have to go through several steps: (i) train StyleGAN
until convergence, (ii) study the latent space to produce
meaningful yet visible disentangled representation which
usually involves more training stages, and (iii) optimize the
latent space for a reference image. We propose a method
that only relies on the first step (i), and during inference,
both the latent space manipulation and image reconstruc-
tion can be efficiently and effectively achieved.

3.2.1 Model

Recently, SEAN [47] and MaskGAN [20] have been pro-
posed as strong alternatives for the generation of images us-
ing layout references by disentangling each style to each
semantic region. However, the generation suffers from be-
ing tied to an exemplar image. In a similar direction, Style-
GAN2 [17] is the current state-of-the-art for image gener-
ation. Inspired by Hong et al. [12] and SEAN, we replace
StyleGAN2 modulated convolutions (ModConv) with im-
proved semantic region-wise adaptive convolutions (SACs).
Let w be the kernel weight, h the input features of the con-
volution, s the condition information, and σE the standard
deviation also known as the demodulating factor, we define
SACs in Equation 8.

ModConvw(h, s) =
w ∗ (sh)
σE(w, s)

⇔ s ∈ R1×C×1×1

SACw(h, s) =
w ∗ (s⊙ h)

σE(w, s)
⇔ s ∈ R1×C×H×W , (8)

where,
s = αwSM + (1− αw)M,

where SM is the per-region style matrix, which can be
either extracted from an image or sampled from a Gaussian
distribution, M is the required semantic mask, and αw is a
learned parameter that weights for the relative importance
of each element at each layer of the network. This equation
can also be seen as the SEAN [47] gamma factor. Please
see [12] for further details on the mathematical development
of Equation 8.

3.2.2 Training Framework

To couple this proposed scheme with the StyleGAN2 train-
ing framework, we propose an alternate scheme training.
First, we update the generator (G) and discriminator (D)

for a random generation as in StyleGAN2. Second, in ad-
dition to the generator and discriminator, we also update a
style encoder network (S) for exemplar-guided synthesis.
For simplicity, we show the loss function for the generator
during the reference synthesis in Equation 9. To this end, let
x and m be the real image and its corresponding semantic
map, respectively.

Lfeat = min
G,S

T−1∑
i=1

1

Ni

[
∥D(i)

k (x)=D
(i)
k (G(m,S(x,m)∥

1

]
Lreference = Ladv + λfeatLfeat (9)

where T is the total number of layers in the discriminator, N
is the number of elements in each layer, and λfeat and λpt

represents the importance of the feature matching loss [36],
and it is set to 10. Note that the feature matching loss is
only required for the reference update.

3.2.3 Experimental Setup

The generator uses semantic maps as the starting point for
image synthesis. Instead of starting from a constant rep-
resentation as in StyleGAN, and as the semantic segmen-
tation information represents the high-level information of
the data, we empirically found that starting from 8×8 yields
better performance. Please refer to the Supplementary Ma-
terial for this experiment and details about the networks.

Given current computational limitations to fully train
StyleGAN2, we train our system during 300,000 iterations
(roughly 3 weeks) using a single GPU Titan Xp with a batch
size of 4 and image size of 256.

3.3. Datasets

Semantic Manipulation We validate our semantic ma-
nipulation method in CelebA-HQ [15] that consists of mul-
tiple facial attribute labels. Since we are tackling semantic
manipulation, we selected 6 visible attributes that were not
related to facial texture: eyeglasses, hat, amount of hair,
bangs, earrings, and identity1. For the semantic segmenta-
tion labels, we use the ones provided by CelebA-Mask [20].

Semantic Image Synthesis Semantic Image Synthesis
only requires generating photo-realistic images using a se-
mantic segmentation as input, and as this scheme does not
need having access to facial attribute labels, we validate this
part of the system using the FFHQ [16] dataset.

3.4. Evaluation Framework

For our entire system, we study independent perfor-
mances under two circumstances: generation by latent
space and generation by exemplar images. Since our pro-
posed solution splits into two stages, we evaluate the se-
mantic manipulation and image synthesis independently.

1Identity refers to the Male/Female label in the CelebA-HQ dataset.
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Figure 3: Qualitative results of the ablation experiments for semantic manipulation. We use reference images to perform
attribute transformation, i.e., for this visualization we transfer all the reference attributes (identity, eyeglasses, baldness) to
the input. Please zoom in for a detailed assessment. WC, MC, and DS stand for Weighted Classes, Modulated Convolutions,
and Detaching Style, respectively, i.e. −WC means we substract the weighted classes experiment from the pipeline.

CelebA-HQ [15] — Latent Synthesis
Pose Attributes Reconstruction Perceptual

Roll↓ Pitch↓ Yaw↓ AP↑ F1↑ mIoU↑ FID↓ Diversity↑
StarGANv2 [8] 2.952 ± 0.856 16.900 ± 6.264 29.331 ± 8.134 0.795 ± 0.092 0.797 ± 0.079 0.964 ± 0.012 81.945 ± 24.276 0.018 ± 0.008
SMILESEM 2.589 ± 0.684 15.082 ± 4.097 11.286 ± 1.983 0.960 ± 0.031 0.946 ± 0.032 0.989 ± 0.002 43.151 ± 15.527 0.399 ± 0.020
(C): SMILESEM −WC 2.683 ± 0.792 18.628 ± 6.243 10.553 ± 2.560 0.965 ± 0.028 0.953 ± 0.027 0.986 ± 0.002 48.123 ± 14.759 0.390 ± 0.013
(B): SMILESEM −WC −MC 2.732 ± 0.681 18.172 ± 4.500 17.626 ± 7.250 0.940 ± 0.039 0.928 ± 0.038 0.987 ± 0.003 46.797 ± 14.204 0.395 ± 0.013
(A): SMILESEM −WC −MC −DS 2.359 ± 0.678 13.520 ± 4.476 15.424 ± 6.432 0.889 ± 0.062 0.884 ± 0.051 0.994 ± 0.001 61.015 ± 22.235 0.382 ± 0.014

CelebA-HQ [15] — Reference Synthesis
Pose Attributes Reconstruction Perceptual

Roll↓ Pitch↓ Yaw↓ AP↑ F1↑ mIoU↑ FID↓ Diversity↑
StarGANv2 [8] 2.472 ± 0.726 14.691 ± 3.987 31.071 ± 15.769 0.811 ± 0.086 0.806 ± 0.077 0.971 ± 0.012 72.910 ± 18.961 0.214 ± 0.051
SMILESEM 1.948 ± 0.450 13.225 ± 3.428 9.439 ± 1.826 0.942 ± 0.030 0.928 ± 0.031 0.989 ± 0.002 50.257 ± 24.735 0.129 ± 0.083
(C): SMILESEM −WC 2.182 ± 0.652 17.142 ± 6.113 9.117 ± 1.280 0.943 ± 0.031 0.930 ± 0.029 0.986 ± 0.002 52.327 ± 23.352 0.111 ± 0.064
(B): SMILESEM −WC −MC 2.277 ± 0.595 16.362 ± 4.304 14.952 ± 5.364 0.919 ± 0.047 0.909 ± 0.043 0.987 ± 0.003 53.298 ± 23.361 0.132 ± 0.057
(A): SMILESEM −WC −MC −DS 2.011 ± 0.698 10.811 ± 4.247 13.765 ± 7.567 0.899 ± 0.063 0.887 ± 0.060 0.994 ± 0.001 65.863 ± 26.084 0.136 ± 0.058

Table 1: Quantitative contribution of each component of our system for Latent Synthesis manipulation (upper part) and
Exemplar Image manipulation (lower part). ↓ and ↑ mean that lower is better and higher is better, respectively. Note that
Diversity computes the LPIPS perceptual dissimilarity across different styles for a single input, therefore higher is better.
WC, MC, and DS stand for Weighted Classes, Modulated Convolutions, and Detaching Style, respectively.

Semantic Manipulation There are two main aspects we
consider for the proper evaluation of our system: the trans-
formation mapping must resemble the pose of the input, and
the output semantic map must contain the target attributes.
To this end, we use an off-the-shelf pose estimator [31]
(HopeNet) and use the training set of CelebA-HQ to train
an attribute classifier using MobilenetV2 [33]. For the en-
tire CelebA-HQ test set, we manipulate each image using
a specific attribute and keeping the others unaltered (for in-
stance only male ↔ female), and we perform 10 transfor-
mations per image. We then extract the average Yaw, Pitch
and Roll using HopeNet, and the average attribute scores
using MobilenetV2, that is, the Root-Mean Squared Error
(RMSE), Average Precision (AP), and F1 score between
the test set and generated images per attribute, for the en-
tire set of attributes. Additionally, following the same pro-
tocol, we also report the FID between the training set and
generated images for each attribute. In addition to FID, we
compute the perceptual Diversity metric across each image
in the test set and 10 different transformations. For both
perceptual metrics, we follow the same validation protocol
as in StarGANv2. Furthermore, we also report the mean In-
tersection over Union (mIoU) over the input image and the
reconstructed cycle image. (Equation 6).

Semantic Image Synthesis As it is common for image
synthesis, we report the Fréchet Inception Distance [32]
(FID), and the Perceptual Similarity Score (LPIPS) [43] as a
measure of dissimilarity across transformations (Diversity).
We strictly follow the same evaluation framework proposed
in StyleGAN2 for FID. Since we have to use real semantic
annotations for the evaluation protocol, we use 10,000 sam-
ples (the entire test set of FFHQ) to compute the FID score.
For Diversity, we generate 10 different samples from a sin-
gle semantic input, and compute the LPIPS score across
each pair, for all possible pairs. In our case, the LPIPS score
is associated with diversity rather than similarity.

4. Discussion
In this section, we discuss in detail the aspects that

strengthen our method. We depict in Figure 3 and 4, and
quantitatively evidence in Table 1 and 2 each part of our
system. Note that the numbers reported in Table 1 are the
average scores for the 8 different attribute manipulations.
Please refer to the Supplementary Material for a detailed
table for each attribute manipulation.

As our framework is an ensemble of two approaches,
i.e., (SMILESEM) and (SMILESYN), we do not compare di-
rectly with purely RGB methods. Conversely, we validate
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Figure 4: Ablation experiments for image synthesis. We present our full system and without our two major contributions for
SMILESYN: SAC layers and Reference Style Encoder. We show StyleGAN2 for reference. Upper and bottom parts of the
figure shows qualitative results for random sampling and projection reconstruction, respectively. We show the semantic maps
and reference images in the bottom corners of each image. Zoom in for better details.

FFHQ [16]
# ParamsExperiment Latent Synthesis Reference Synthesis Training

FID↓ Diversity↑ Runtime [s/img] LPIPS↓ PSNR↑ SSIM↑ RMSE↓ Runtime [s/img] [days] [millions]
StyleGAN2 [17] 15.152 - 0.03 0.14 ± 0.02 20.13 ± 1.14 0.66 ± 0.03 0.11 ± 0.02 120 2.5 30.0
SMILESYN 16.99 0.43 ± 0.03 0.13 0.21 ± 0.06 18.19 ± 2.84 0.54 ± 0.10 0.13 ± 0.03 0.13 17.5 42.2
(B): SMILESYN −Encoder 13.08 0.42 ± 0.04 0.13 0.18 ± 0.06 17.86 ± 2.97 0.60 ± 0.09 0.13 ± 0.05 210 9.4 39.9
(A): SMILESYN −Encoder −SAC 24.12 0.08 ± 0.03 0.60 0.42 ± 0.07 10.38 ± 2.07 0.34 ± 0.08 0.31 ± 0.07 180 3.8 36.1
SPADE [27] - - - 0.40 ± 0.02 12.33 ± 0.69 0.40 ± 0.03 0.25 ± 0.02 0.56 1 92.5
SEAN [47] - - - 0.24 ± 0.02 16.68 ± 0.82 0.52 ± 0.03 0.15 ± 0.01 0.28 4 266.9

Table 2: Image synthesis quantitative evaluation under different configurations, and in comparison with recent works.

our framework as independent stages and perform an exten-
sive comparison with strong baselines, and state-of-the-art
methods in the image synthesis task.

4.1. Semantic Manipulation (SMILESEM)

We use the state-of-the-art method [8] in multi-domain
image manipulation as backbone for our method. As Star-
GANv2 was proposed for mutually exclusive domains, we
first extend it to deal with co-existing domains. We ap-
ply the concatenation of all the target styles as an input in
addition to the RGB image. As Figure 3 shows and Ta-
ble 1 indicate, StarGANv2 does not generalize well to dif-
ferent domains. Interestingly, we found that StarGANv2
struggles when trained when using domains different from
Male/Female. We hypothesize that it is due to the fact that
the style encoder extracts general characteristics of the en-
tire image and thanks to the lack of supervision it cannot
focus on fine-grained styles. To circumvent this problem,
we instead use the high-level semantic information as input

and perform manipulations in this space (A), as the shape
of each attribute is much easier to handle in the semantic
space. This change leads to cleaner and sharper transforma-
tions that better approximate the desired domain.

Moreover, we found that (B) disabling the gradients of
the style encoder during the reconstruction pass, is sufficient
for the overall training framework and reduces the training
time by half. Our rationale is as follows: as we are inject-
ing a random style through the mapping function, and the
style encoder learns to reconstruct it, then we can assume
that after enough iterations the style encoder extracts the
corresponding style from the real image.

Simplifying our system for the semantic space brings the
problem of losing the texture information. We found that
using Adaptive Instance Normalization layers (AdaIN [13])
deforms the input’s image pose, in particular Yaw, dur-

2We report the StyleGAN2 FID for a model trained with batch size 4
and 300,000 iterations. It is possible that this result does not match with
the one reported in the original paper.
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ing the transformation, and yet it still minimizes the pro-
posed formulation in Equation 7. Therefore, we noticed
that (C) conditionally modulating the weights of the con-
volutions [17] alleviates this issue and the output resembles
the pose of the input.

Furthermore, As we assumed equal dimensionality con-
tribution per domain, transformations produced in stage (C)
are not diverse enough across domains. By closely inspect-
ing the resultant images we found that the identity domain
is the least diverse in spite of being the most abstract and the
one that models the biggest part of the image (for instance
facial structure, clothes, hairstyle, etc). Finally, for our pro-
posed approach (SMILESEM), we weighted the identity do-
main to have more representation in the final latent vector
with respect to the others, so this domain has a bigger im-
pact than other domains (e.g., eyeglasses, bangs, etc) in the
reconstruction style loss, and it can consequently produce
more diverse transformations. This change of dimension-
ality for the identity domain is inspired by an observation
from the semantic space. Most of the selected domains have
one specific corresponding channel in the semantic space
that facilitates the style encoding, yet it is not the case for
the identity.

Additionally, to further assess a quantitative disentan-
gled level of the manipulations, we studied how each inde-
pendent transformation affects the unaltered attributes. We
accomplished this feat by computing Precision and Recall
curves over each manipulation. Please refer to the Supple-
mentary Material for the generated curves.

4.2. Semantically Image Synthesis (SMILESYN)

StyleGAN2 [17] is the state-of-the-art method in image
synthesis. Using this method to perform attribute manip-
ulation or modifying an existing image is very challeng-
ing, and usually involves different post-processing tech-
niques. In order to modify StyleGAN2 backbone to be able
to perform both disentangled representations in the seman-
tic space and modify existing images, we introduce differ-
ent subtle but critical changes to the architecture to build
SMILESYN. See Figure 4 and Table 2 for qualitative and
quantitative ablative comparison, respectively.

We first (A) replace the StyleGAN2 style condition by
semantic information in a SPADE [27], which implies there
is not diversity in the generation as it is a deterministic
mapping. Next (B), to introduce both semantic information
and per-style region into our framework, we replace all the
Modulated Convolutions by SAC layers (Equation 8). We
use the full style per-region matrix in conjunction with the
segmentation mask to generate diverse images controlled
by random noise in each region. Only with SAC layers our
method outperforms the state-of-the-art for face generation.
Finally, in order to generate a fast reference synthesis,
we incorporate a style encoder. SMILESYN is trained in

Figure 5: Our model learns a diverse manipulation for mul-
tiple attributes using a single generator and keeping the
identity of the input. The style imposition is as follows:
eyeglasses, clothes and hair; hair and earrings; and hair, re-
spectively.

an alternate fashion by generating random and projected
images using either the latent space or the reference
style encoder, respectively. As a result of the alignment
between the mapping random style and style encoder, we
encountered a trade-off in the performance. This trade-off
is expected due to the random nature of the latent sampling,
i.e., as the mapping network can receive very different
styles for skin, neck, and ears, this is not the case for the
reference synthesis. This trade-off is strongly evidenced
in the runtime that each method requires to reconstruct
a reference image. SMILESYN compares favorably with
StyleGAN2 yet does not require a post-optimization
process for image projection. Furthermore, as our ablation
study lies in the StyleGAN domain, we also compare
our method with fully I2I translation methods. We show
comparison with respect to SPADE [27] and SEAN [47],
which are reference methods for semantic image synthesis.
SMILESYN performs better, faster, and requires fewer
parameters.

As our final goal is to manipulate attributes in the RGB
space, i.e., SMILE = SMILESYN ◦ SMILESEM, see Figure 1
and 5 for a complete visualization of multi-attribute
semantic manipulation and image synthesis.

5. Conclusions
We introduced SMILE, a method for multi-attribute

image-to-image translation using random sampling or im-
age guiding reference. We show that using a semantic seg-
mentation space as an intermediate step is a much easier
manipulation task, which can be further transformed into
RGB by more sophisticated semantically driven image syn-
thesis schemes. We extensively show that our method out-
performs previous state-of-the-art baselines StarGANv2 [8]
and StyleGAN2 [17] for both image manipulation and im-
age synthesis.

1931



References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan latent
space? In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition (CVPR), pages 4432–4441,
2019. 5

[2] Amjad Almahairi, Sai Rajeswar, Alessandro Sordoni, Philip
Bachman, and Aaron Courville. Augmented cyclegan:
Learning many-to-many mappings from unpaired data. In
Proceedings of the International Conference on Machine
Learning (ICML), pages 195–204, 2018. 1

[3] David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and
Antonio Torralba. Rewriting a deep generative model. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2020. 2

[4] Sagie Benaim, Michael Khaitov, Tomer Galanti, and Lior
Wolf. Domain intersection and domain difference. In Pro-
ceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 3445–3453, 2019. 2, 3

[5] Marcel Christoph Bühler, Andrés Romero, and Radu Timo-
fte. DeepSEE: deep disentangled semantic explorative ex-
treme super-resolution. In Proceedings of the Asian Confer-
ence on Computer Vision (ACCV), 2020. 2

[6] Huiwen Chang, Jingwan Lu, Fisher Yu, and Adam Finkel-
stein. Pairedcyclegan: Asymmetric style transfer for ap-
plying and removing makeup. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition
(CVPR), pages 40–48, 2018. 1, 2

[7] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 8789–
8797, 2018. 1, 2

[8] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
StarGAN v2: diverse image synthesis for multiple domains.
In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition (CVPR), 2020. 1, 2, 3, 6, 7, 8

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in Neural Information Processing Systems (NeurIPS), pages
2672–2680, 2014. 2

[10] Jingtao Guo, Zhenzhen Qian, Zuowei Zhou, and Yi Liu.
Mulgan: Facial attribute editing by exemplar. arXiv preprint
arXiv:1912.12396, 2019. 1, 2

[11] Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan,
and Xilin Chen. Attgan: Facial attribute editing by only
changing what you want. IEEE Transactions on Image Pro-
cessing, 28(11):5464–5478, 2019. 1, 2

[12] Sarah Jane Hong, Martin Arjovsky, Ian Thompson, and Dar-
ryl Barnhardt. Low distortion block-resampling with spa-
tially stochastic networks. arXiv preprint arXiv:2006.05394,
2020. 5

[13] Xun Huang and Serge J Belongie. Arbitrary style transfer
in real-time with adaptive instance normalization. In Pro-

ceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 1501–1510, 2017. 2, 7

[14] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.
Multimodal unsupervised image-to-image translation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 172–189, 2018. 1

[15] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2018. 5, 6

[16] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition (CVPR), pages 4401–4410, 2019. 2, 3,
5, 7

[17] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 8110–8119, 2020. 3, 4, 5, 7, 8

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 4

[19] Guillaume Lample, Neil Zeghidour, Nicolas Usunier, An-
toine Bordes, Ludovic Denoyer, et al. Fader networks: Ma-
nipulating images by sliding attributes. In Advances in Neu-
ral Information Processing Systems (NeurIPS), pages 5967–
5976, 2017. 2

[20] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo.
Maskgan: Towards diverse and interactive facial image ma-
nipulation. In Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 5549–
5558, 2020. 2, 3, 5

[21] Hsin-Ying Lee, Hung-Yu Tseng, Qi Mao, Jia-Bin Huang,
Yu-Ding Lu, Maneesh Kumar Singh, and Ming-Hsuan Yang.
Drit++: Diverse image-to-image translation via disentangled
representations. International Journal of Computer Vision,
pages 1–16, 2020. 1

[22] Minxuan Lin, Fan Tang, Weiming Dong, Xiao Li,
Chongyang Ma, and Changsheng Xu. Distribution aligned
multimodal and multi-domain image stylization. arXiv
preprint arXiv:2006.01431, 2020. 2

[23] Ming Liu, Yukang Ding, Min Xia, Xiao Liu, Errui Ding,
Wangmeng Zuo, and Shilei Wen. Stgan: A unified selec-
tive transfer network for arbitrary image attribute editing. In
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition (CVPR), pages 3673–3682, 2019. 1

[24] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi,
and Cynthia Rudin. Pulse: Self-supervised photo upsam-
pling via latent space exploration of generative models. In
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition (CVPR), pages 2437–2445, 2020. 2

[25] Ron Mokady, Sagie Benaim, Lior Wolf, and Amit Bermano.
Mask based unsupervised content transfer. In Proceedings
of the International Conference on Learning Representations
(ICLR), 2020. 2

[26] Evangelos Ntavelis, Andrés Romero, Iason Kastanis, Luc
Van Gool, and Radu Timofte. SESAME: semantic editing of

1932



scenes by adding, manipulating or erasing objects. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2020. 2

[27] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 2, 3, 7,
8

[28] Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli
Shechtman, Alexei A Efros, and Richard Zhang. Swapping
autoencoder for deep image manipulation. In Advances in
Neural Information Processing Systems (NeurIPS), 2020. 2

[29] Albert Pumarola, Antonio Agudo, Aleix M Martinez, Al-
berto Sanfeliu, and Francesc Moreno-Noguer. Ganimation:
Anatomically-aware facial animation from a single image. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 818–833, 2018. 1, 2

[30] Andrés Romero, Pablo Arbeláez, Luc Van Gool, and Radu
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