
Manipulating Image Style Transformation via Latent-Space SVM

Qiudan Wang
ViaX Online

East District of Jianwai SOHO, Beijing, China
qiudan.wang@outlook.com

Abstract

Deep Neural Networks have been proved as the go-to ap-
proach in modeling data distribution in a latent space, espe-
cially in Neural Style Transfer (NST), which casts a specific
style extracted from a source image to another target image
by calibrating the style and content information in a latent
space. While existing methods focuses on different ways to
extract features that more precisely describe style or con-
tent information to improve existing NST pipelines, the la-
tent space of the NST model has not been well-explored. In
this paper, we show that different half-spaces in the latent
space are actually associated with particular styles of a net-
work’s generated images. The corresponding constraints of
these half-spaces can be computed by using linear classi-
fiers, e.g. a Support Vector Machines (SVM). Leveraging
the understanding of the relation between half-spaces in the
latent space and output style, we propose the Linear Mod-
ification for Latent Representations (LMLR), a method that
effectively increases or decreases the level of stylizing in
the output image for any given NST model. We empirically
evaluate our method on several state-of-the-art NST models
and show that LMLR can manipulate the level of stylizing
in the output image.

1. Introduction
Neural Style Transfer (NST) utilizes Convolutional Neu-

ral Networks (CNNs) to jointly encode the content and style
information of images to generate a new image by mixing
desired contents and styles. One well-applied method that
separates the content and the style of an image is to consider
internal representations from shallower layers of a CNN that
encode the content information by directly “watching” lo-
calized features in the input whereas deeper layers learn
more high-level features, among which one is the style of
the input. Recent work has shown that instead of learning a
synthesized image for each particular pair of the content and
style image [5], one can directly learn a function to realize
NST for any given input pairs [11], also known as universal

style transfer.
The perceived success of universal style transfer in ef-

ficiently realizing NST, however, is still opaque to humans
as the black-box nature of neural networks. Understanding
the internal process of an style transfer model is expected to
benefit the development and improvement of existing ones.
Previous work on explaining discriminative models, i.e. text
and image classifiers, attributes a model’s output over input
features [15]. However, similar to Generative Adversarial
Networks (GANs), universal style transfer models usually
learn a generative model that produces synthesized images
from a latent space, therefore, do not fit into the scope of
existing explanation tools. To Pursue better explanations
on generative models, InfoGAN [3] demonstrates particu-
lar distributions in the latent space corresponding to some
certain output behavior. Further, InterfaceGAN [15] illus-
trates the latent space of a generative model can be parti-
tioned into half-spaces, which are shown to be associated
with some interests of the output images, e.g. the bright-
ness of the images and the orientation of the objects.

Given the similarity between generative models and the
decoding process of the synthesized images in NST, we peer
into the NST pipeline to show how a style is combined with
a content image in the latent space, leveraging the tech-
nique that partitions the latent space from InterfaceGAN
[15]. Specifically, we show that, by modifying the latent
representation of the NST pipeline in a correct way, we can
manipulate different attributes of its output, e.g. the syn-
thesized images. Our method allows us to improve the per-
formance of existing NST pipeline on several widely-used
metrics and examples of our approach are shown Fig. 1.

In summary, we firstly demonstrate that different regions
of the output space of the encoder, a.k.a. the latent space, of
an NST model correspond to different stylized output im-
ages. And we secondly show that the decision boundaries
between regions that determine the output style can be ef-
fectively learned by using a linear model, i.e. Support Vec-
tor Machine (SVM) [19]. Thirdly, by leveraging the con-
nection between regions in the latent space and output style,
we propose Linear Modifications for Latent Representa-

1915

Figure 1. Example style transfer results. The first image of each
row is a style image and the second is a content image, followed
by the synthesized images of four different methods.

tions (LMLR) as a method to adjust the stylization level of
generated images. Our empirical results over WikiArt [10]
and ImageNet [13] show the effectiveness of our method.

The rest of the paper is organized as follows: In Sec. 2
we first discuss the notations and the background of style
transfer. We introduce the motivation and implementation
of the latent-space SVM for manipulating style transfer in
Sec. 3. We further evaluate our approach with several NST
pipeline and a recent work that can adjust the style in real-
time in Sec. 4. We then discuss the recent work that also
aims to provide adjustable style transfer later in Sec. 5. We
end the paper by discussing an limitation of our work and
the conclusion we arrive at Sec. 6 and 7.

2. Background
In this section, we firstly introduce the notations we use

in Sec. 2.1. And secondly we make a brief introduction
of NST, then focus on a specific method AdaIN [7], with
which our method cooperates in Sec. 2.2.

2.1. Notations

Throughout the paper we will use x to denote a scalar
and the bold font x to denote a vector. We use || · || to
denote the `2 norm of a vector and for a set A, we write its
cardinality as |A|. Furthermore, We describe different parts
of a NST pipeline. One standard architecture that has been
used in the literature [8, 7, 14, 6, 12, 1, 4] is a composed
function:

y = g ◦ (s ◦ f)(xc,xs) (1)

where (xc,xs,y) ∈ Ra×Ra×Ra are the input content
image, the input style image and the output stylized image
respectively, and we call the function f, s, g as the encoder,
the style transfer function and the decoder respectively. The
encoder function is a mapping f : Ra×Ra → Rd×Rd (usu-
ally we let d < a) that “compresses” a content image and a
style image into low-dimensional representations, while the
style transfer function s : Rd × Rd → Rd integrates the
compressed representations of the content and style images
into a latent representation z. One of the most well-known
style transfer function is AdaIN [7] which will be discussed
in Sec. 2.2. Finally, the decoder function g : Rd → Ra
maps the latent representation z into the target stylized im-
age y. The state-of-the-art designs of a NST pipeline usu-
ally learn an encoder f and a decoder g with deep neural
networks where the design of the style transfer function s
usually relies on heuristics.

2.2. Learning Image Style Transfer Networks

Image style transformation aims to transfer the style of a
source image xs into another source image xc. To this end,
it generates a new image y with the content from xc and the
style from xs. Though the way to differentiate the content
and the style information in an image from the other is not
rigorously defined, empirical evidence has shown that when
feeding an image into a deep model, the internal output of
the shallow layers aligns with the content information while
the deep layers encode the style information [5]. For exam-
ple, Gatys et al. [5] are considered as the first individuals
to combine internal outputs from different layers to transfer
the style of one image to another while keeping the content
of the source image aside. Several approaches [8, 17] aim
to solve an obvious limitation in Gatys et al. [5] method that
each run of the image transfer starts from scratch; therefore,
it usually requires thousands of forward passes before con-
vergences happen. Motivated by previous work, Huang et
al. [7] propose AdaIN as an end-to-end NST model such
that the style transfer can be complete in one run of forward
propagation. We refer to the NST model as the architec-
ture used in Huang et al. [7] in the rest of the paper unless
noted otherwise. Formally, a NST network is composed
of an encoder network f , a decoder network g and a style
transfer function s. The encoder network f extracts infor-
mative representations from input content (or style) images
and are learned via pre-trained classification tasks usually
on large-scale data sets, e.g. ImageNet [13]. The weights
of such pre-trained networks can be found publicly from
Tensorflow or Pytorch with the dense layers removed from
the top. The style transformation s is usually designed by
heuristics; for example, AdaIN uses the following function:

Definition 1 (AdaIN [7]) Given a content image xc, a style
image xs and an encoder f(x), the style transfer function s
for AdaIN is defined as:

1916

Figure 2. An overview of AdaIN style transfer algorithm.

σ(f(xc))(
f(xc)− µ(f(xc))

σ(f(xs))
) + µ(f(xs)) (2)

where σ(·) and µ(·) denote the element-wise standard devi-
ation and the element-wise mean.

Finally, the decoder g is trained to generate a stylized
image that combines the content from xc and the style from
xs. A visual illustration of the NST pipeline and the training
loss for the decoder is shown in Fig. 2.

Definition 2 (Neural Style Transfer) Given an encoder
network f , its internal output f l at the l-th layer and a
style transfer function s, we denote the output of NST as
y = g ◦ (s ◦ f)(xc,xs). We learn the parameter θ of the
corresponding decoder network g by optimizing the follow-
ing objective:

min
θ

E((xc,xs)∼D) [Lc(xc,xs) + λLs(xc,xs)] (3)

Lc(xc,xs) = ||f(y)− (s ◦ f)(xc,xs)||2 (4)

Ls(xc,xs) =
L∑
l=0

||µ(f l(y))− µ(f l(xs))||2+

L∑
l=0

||σ(f l(y))− σ(f l(xs))||2 (5)

where Lc and Ls denote the content loss and the style
loss, respectively; σ(·) and µ(·) denote the element-wise
standard deviation and the element-wise mean; and λ is a
hyper-parameter1.

3. Latent Space Manipulation
When a stylized image y is generated by an NST model,

the existing methods cannot manipulate the level of styliza-
tion in y. Namely, when the parameters of the decoder net-
work are learned, the output of the decoder is fixed, so that

1Huang et al. [7] use only a few selected layers instead of the output of
all layers in Ls.

we cannot generate a similar output y′ which is less or more
stylized compared to y. Manipulating the level of styliza-
tion helps to apply NST to real-world applications where
human users can provide feedback to the model to increase
or decrease the stylization in y so that the final output satis-
fies different user purposes without retraining the decoder.

In this section, we firstly introduce our motivation of the
proposed method in Sec. 3.1 followed by how it works em-
pirically in Sec. 3.2.

3.1. Motivation

A related line of work in manipulating the output behav-
ior of a generative model like NST is InterfaceGAN [15],
where the authors show that the latent space of the genera-
tive model can be partitioned into half-spaces and each half-
space is correlated to a particular attribute of the generated
image, e.g. brightness, orientation, masked or not, etc. By
projecting an arbitrary input vector sampled in the latent
space onto the linear constraint that defines the half-spaces
above, InterfaceGAN manipulates a particular attribute of
the generated image while maintaining other attributes un-
changed, e.g. a man with blond hair into a woman with
blond hair. Motivated by InterfaceGAN, we are looking for
a similar way to explore and separate the latent space of the
encoded image in an NST model to find the steepest direc-
tion to increase or decrease the stylization of the generated
image y. This method, which we introduce in the rest of this
section, will provide the most effective way to manipulate
the output stylization.

3.2. Method

When a content image xc and a style image xs are fed
into the encoder and the style transfer function, a latent vec-
tor z = s ◦ f(xc,xs) is returned. Motivated by the la-
tent space manipulation in InterfaceGAN [15], we aim to
find a boundary H in the latent space such that whenever
H(z) > 0 for an arbitrary vector z′ in the latent space, the
generated image by decoding g(z′) has a higher level of
stylization compared to g(z) and otherwise if H(z′) < 0.
As Shen et al. [15] use Support Vector Machine (SVM) [19]
to learn a boundary H , we follow the idea and formally
introduce Linear Modifications for Latent Representations
(LMLR) for an NST model.

Definition 3 (LMLR) Given the target class of style t, a
SVM classifier Ht(z) = sign(w>z+ b) is learned by min-
imizing the following objective:

E((xs,xc)∼D) max(0, 1− I[S = t] ∗ [w>z+ b]) (6)

where S is the label for xs and z = s ◦ f(xc,xs).

For each style t we train a corresponding LMLR Ht to
partition the latent space into half-spaces by maximizing

1917

Figure 3. The process of style classification in the latent space. In
the first step, we take paintings from a particular style t as positive
samples and content images of real world as negative samples. In
the second step, we feed them into an encoder to getting their la-
tent representations. Finally, we train an optimal boundary Ht to
classify these latent representations.

Figure 4. The overall framework of our style transfer model. Ac-
cording to the assumption which is introduced in Sec. 3.2, we add
an Enhancing Block to project outputs of the AdaIN layer onto the
decision boundary. This manipulation process is defined in Def.
4.

the distance between the latent vectors and the boundary,
as shown in Fig. 3. We show that LMLR can achieve up to
100% accuracy in Sec. 4.2.

Manipulating Stylization. By learning a linear boundary
with SVM, we now discuss how to manipulate the level of
stylization of the generated image g(z). Given a latent vec-
tor z, in order to increase the level of stylization for a style
t, we move z away from the linear boundary which is de-
fined by LMLR Ht if Ht(z) > 0; otherwise we move it
closer and cross Ht. We refer the process of manipulating
the output stylization as an Enhancing Block and we define
it formally as follows:

Definition 4 (Enhancing Block) Given a latent vector z,
and a LMLR Ht(z) = sign(w>t z + bt) for the target style
t, a more stylized output can be generated by a latent vector
z′ such that:

z′ = z+ λ ∗ d wt

||wt||2
(7)

where d = |w>t z+ bt|/||wt||2 and λ is a hyper-parameter
to control the distance between z′ and its original latent
representation z.

In our method, we manipulate the point z whereHt(z) <
0. By setting λ = 1, we simply get a point z′ exactly on

the boundary defined by Ht by projection. Similarly, to in-
crease or decrease the level of output stylization, we just
need to set λ to a different value. In this way, we complete
the manipulation of the images in the style latent space, and
the style transfer effect of the synthesized image has been
enhanced. Furthermore, our method can also be applied to
any other models with an encoder and decoder by manip-
ulating the output latent representation with an Enhancing
Block shown in Fig. 4.

4. Evaluation
In this section, we provide empirical evaluations of our

method and compare it with several baseline approaches.
Firstly, we discuss the setup of our experiments in Sec. 4.1.
Secondly we show that the latent space can be efficiently
separated by one linear boundary in Sec. 4.2. Finally, in
Sec. 4.3, we compare our method with three other types
of style transfer approaches and one type of the other ad-
justable method.

4.1. Experiment Setup

Architecture. As described in Sec. 3, our architecture con-
tains two processes. The first process is to train a linear
decision boundary for each style and the second is to use
the enhancing block ((Def. 4)) to manipulate the style and
content preservation in output images. In generating the
original latent representation z, we choose the pre-trained
AdaIN as our base model. And we add the enhancing block
with hyper-parameter λ = 1 (the justification of the choice
of λ to follow) after AdaIN’s transfer function s to produce
the target latent representation z′:

z′ = EnhancingBlock ◦ s ◦ f(xc,xs) (8)

Where, the encoder f is fixed to the first few layers (up
to relu4 1) of a VGG-19 network [16]. The Enhancing-
Block is described in Def. 4, and s is defined in Def. 1.
The decoder shown in Fig. 4 mirrors the encoder to transfer
the representation z′ into the stylized output, with all pool-
ing layers replaced by the nearest up-sampling to reduce
checkerboard effects. Both the encoder and the decoder use
reflection padding to avoid border artifacts.
Training. Training linear decision boundaries, we use 3000
paintings of 11 artists from WikiArt [10] as positive sam-
ples, and the same quantity of photos from ImageNet [13] as
negative samples. For all images, we randomly crop regions
to be the size 256 × 256, and adopt a pre-trained VGG-19
network [16] to encode them to latent representations. Ac-
cording to Def. 3 and 4, we train a linear decision boundary
for every style and manipulate latent representations along
the direction of the normal vector.
Testing. In evaluation, we generate 200 stylized images, by
the cartesian product of 20 paintings from WikiArt [10] and

1918

Artist
Accuracy for
validation set

Accuracy for
whole set

berthe-morisot 0.987 0.991
claude-monet 1.000 1.000
el-greco 0.992 0.998
ernst-ludwig-kirchner 0.971 0.988
jackson-pollock 0.971 0.988
nicholas-roerich 0.865 0.946
pablo-picasso 0.965 0.982
paul-gauguin 1.000 1.000
samuel-peploe 1.000 1.000
vincent-van-gogh 0.988 0.991
wassily-kandinsky 0.983 0.989

Table 1. Classification accuracies on linear boundaries in latent
space.

10 photos from ImageNet [13], for every artist. It is to be
noted that the training data sets and testing data sets have no
intersections and all the tested methods use the same testing
data sets. Also, all the paintings and photos are chosen ran-
domly.

4.2. Performance of Latent SVM

For each artist, we use 70% positive and 70% negative
samples to train a linear SVM hyperplane and evaluate the
performances on the remaining data. Table 1 demonstrates
that nearly all the linear boundaries achieve over 95% ac-
curacy on the validation set, which suggests that it is easy
to find a linear hyperplane in the latent space that can well
separate the data into two groups. We further provide the
timing of training the latent-space SVM in Table 4.

4.3. Quantitative Evaluations

In this subsection, we firstly conduct quantitative exper-
iments to examine the levels of style and content preserva-
tion in our method and others’. Secondly, we manipulate
the distances between output images and decision bound-
aries to see how style and content preserved in output im-
ages are varied. In the end, we demonstrate our method is
time-efficient.

4.3.1 Comparisons with Non-manipulable Approaches

We first compare our methods with the following baselines,
which are all non-manipulable approaches:

• a flexible but slow optimization-based method
(Gatys) [5]

• the fast feed-forward method based on arbitrary in-
stance normalization (AdaIN) [7]

Artist Original
berthe-morisot 0.7
claude-monet 0.95
el-greco 0.85
ernst-ludwig-kirchner 0.95
jackson-pollock 0.9
nicholas-roerich 1
pablo-picasso 0.9
paul-gauguin 1
samuel-peploe 0.8
vincent-van-gogh 0.95
wassily-kandinsky 1

Table 2. Deception Rates of the original input style images. A
Higher score means better stylization effect.

• the universal-style transfer with whitening and color-
ing transformation (WCT) [11]

We now discuss our numerical metrics used in the previ-
ous literature to quantify the level of stylization and content
retention.
Deception Rate [14]. we use this metric to evaluate how
well the input style is preserved in output images. We train
a classifier on WikiArt [10] to categorize styles and use its
output score as the probability of the stylized output being
classified into the target style. Table 2 demonstrates the
average deception rate of the original input style images.
Also, we compare the deception rates of our method with
those of AdaIN [7], WCT [11] and Gatys [5] approaches
in Fig. 6. The results show that our approach outperforms
AdaIN and WCT, even though Gatys has the highest score,
the computation speed of Gatys is three orders of magnitude
slower than ours.
Content retention [14]. In this evaluation, we train another
classifier on ImageNet [13] to categorize contents and use
its Top 5 Accuracy to indicate the retention of the content.
The average Top 5 Accuracy of the original input content
images is 0.3. In Fig. 8, we can see that our approach is
better than AdaIN in Top 5 Accuracy, more significantly,
the average accuracy of our approach is nearly twice larger
than AdaIN’s. However, since the average accuracy of the
original input content images is not very high, we also use
cosine distance to evaluate the similarities between the styl-
ized images and their original input content images. Fig.
9 demonstrates the results of cosine similarity, which also
shows that our method works better than AdaIN. Therefore,
both metrics signify that our approach can retain the con-
tention as well as AdaIN, meanwhile providing more con-
vincing stylization results.
Distance Effect of Latent Space. As described in Sec. 3.2,
the Enhancing Block proposed in our paper can move the la-
tent representation to the classification hyperplane along the

1919

Figure 5. Illustration of the distance effect by latent representation manipulation. The images in the red dashed box stand for synthesized
images on the boundary. When the distance keeps increasing in the positive direction, the style of images is more pronounced.

0

0.2

0.4

0.6

0.8

AdaIN Ours WCT Gatys

Figure 6. Comparison with Deception Rates of AdaIN, Ours,
Gatys and WCT shown in boxplot.

direction of the normal vector. When manipulating the la-
tent representation, we observe, through the distance effect,
that moving the latent representation can produce continu-
ous changes in stylization. Fig. 5 clearly shows the output
images near the boundary are well balanced for stylization
and content retention, while the images in the positive di-
rection far from the boundary have more stylization and the
images in the negative direction have less stylization. We
also make a qualitative and quantitative analysis of distance
effect with another adjustable method from Fig. 10 to 12.

Figure 7. Examples of our method and AT, from left to right, λ of
our model decreases from 5 to -5, αs of AT decreases from 1010

to 0.

4.3.2 Comparing with another adjustable approach

A recent work by Babaeizadeh & Ghiasi [2] introduces a
real-time Adjustable Transfer (AT) for the NST pipeline. In

1920

0

0.02

0.04

0.06

0.08

0.1

AdaIN Ours Gatys WCT

Figure 8. Comparison with Top 5 Accuracies of AdaIN, Ours,
Gatys and WCT shown in boxplot.

0.80

0.84

0.88

0.92

0.96

AdaIN Ours Gatys WCT

Figure 9. Comparison with Cosine Similarities of AdaIN, Ours,
Gatys and WCT shown in boxplot.

this section, we compare our approach with AT on the same
metrics mentioned above and discuss our conceptual differ-
ence with AT in Sec. 5. Since AT is not an arbitrary transfer,
which runs an optimization for every input style image. We
use an implementation from github 2 with the same train-
ing data sets as ours. For each style, we train it for 3300
iterations. The default style loss weight αs and content loss
weight αc are set 1010 and 105, respectively. Unlike our
method manipulating the style from both negative and posi-
tive directions, AT usually does not have a practical use case
for setting its parameters to the negative. Thus, in manip-
ulating the outputs of AT, we modify the style loss weight
by multiplying it with a positive ascending sequence that
begins with 0.2 and ends with 1.0 with an interval of 0.2,
while keeping the content loss weight unchanged. Fig. 7
shows the manipulating results from our method and AT in
quality. Our method achieves better results than AT, even
though the outputs of AT vary along with the modification
of style loss weight αs, these changes are not very related
to the style, it seems like AT only edits luminosity and hues
and ignores other key elements like pattern and brushstroke

2https://github.com/gnhdnb/
adjustable-real-time-style-transfer

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

-5 -4 -3 -2 -1 0

(0.0)

1

(0.2)

2

(0.4)

3

(0.6)

4

(0.8)

5

(1.0)

Ours AT

λ
()

Figure 10. Deception Rates of our method and AT with different
distances and style loss weights, respectively.

0

0.02

0.04

0.06

0.08

0.1

0.12

-5 -4 -3 -2 -1 0

(0.0)

1

(0.2)

2

(0.4)

3

(0.6)

4

(0.8)

5

(1.0)

Ours AT

λ
()

Figure 11. Top 5 Accuracies of our method and AT with different
distances and style loss weights, respectively.

in the style inputs. In quantitative analysis, we draw a com-
parison of distance effect in Fig. 10, 11 and 12. The results
represent that deception rates of AT are almost zero, but the
cosine similarities and Top 5 accuracies of it are within ex-
pectation. Although, in Fig. 7, we can tell that AT does not
achieve good performance in stylization, the results in paper
[2] are quite well in quality even the authors demonstrated
no quantitative experiments. Therefore, with more time, we
will contact the authors and discuss this issue to see if there
is a problem.
Speed Analysis. Evaluating the effect of EnhancingBlock
on time consumption, we use AdaIN and our method to gen-
erate 1000 256 × 256 images each and calculate the average
time per image to Encode, Transfer (AdaIN /Enhancing-
Block) and Decode. Table 3 shows the results, from which
we can see the vast majority of the time is spent by Encode
and Decode, while stage Transfer only accounts for 0.62%
of the total time. Compared with AdaIN, even though our
method takes 30% more time in Transfer, which is mainly
used to calculate distances in EnhancingBlock. However,

1921

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

-5 -4 -3 -2 -1 0

(0.0)

1

(0.2)

2

(0.4)

3

(0.6)

4

(0.8)

5

(1.0)

Ours AT

λ
()

Figure 12. Cosine Similarities of our method and AT method with
different distances and style loss weights, respectively.

Stage
AdaIN time-
consuming (ms)

Ours time-
consuming (ms)

Encode 18.962 18.898
Transfer 0.085 0.111
Decode 12.283 12.289

Table 3. Time-consuming per image of AdaIN and Ours Method
at each stage

Stage
AT time-
consuming (ms)

Ours time-
consuming (ms)

Training 351.526 92.481
Generating 634.717 31.298

Table 4. Time-consuming of AT and Ours Method at training (per
iteration) and generating (per image), the training process excludes
the time of saving models, and generating processes does not cal-
culate the time of loading models and saving output images onto
the disk, respectively.

this increase of time is negligible in terms of the total time
consumption. Additionally, we make a comparison of the
time spent on training per iteration and generating per im-
age between our method and AT in Table 4. Normally, our
method only needs to train 500 iterations to get a qualified
result, but AT needs to train 3000 iterations.

5. Related Work
In this section, we compare several recent works in ma-

nipulating the stylization of an NST pipeline with our work.
Ulyanov et al. [18] demonstrates a preliminary work on

generating multiple stylization for NST task, which only
aims to produce more stylized output without enforcing any
notation of more stylization or less stylization as used in our
paper. Babaeizadeh & Ghiasi [2] introduce a real-time ma-
nipulation of the stylization (AT) by learning another net-
work that predicts the scalars in the weighted sum of the

target loss used by style transfer (see Eq. 3), which con-
trols the output stylization by finding a better way to aggre-
gate the contribution of each layer in the encoder network.
Besides quantitative and qualitative comparisons as shown
in Sec. 4.3, another major difference between our method
with Babaeizadeh & Ghiasi [2] is our method is resource-
efficient given that a linear model (SVM in our case) is
sufficient to manipulate the stylization while Babaeizadeh
& Ghiasi [2] requires the training of a multi-layer fully-
connected network. Leveraging SVM also guarantees the
explanation ability of our approach as we show that the styl-
ization is enhanced if the internal representation is far away
from the decision boundary compared to any approaches
that require additional deep models.

Another line of work either focuses on applying GAN to
perform adjustable style transfer [20] or searches for an ob-
vious way to adjust a style-transfer GAN [9]. These meth-
ods usually require a new network while our method can
be viewed as a plug-in to many existing NST pipelines.
Therefore, our method makes a minimal change compared
to GAN-based methods. Besides, Babaeizadeh & Ghiasi [2]
has shown that the style manipulation in [9] is not highly
perceptional to humans.

6. Limitation
An obvious limitation of our work is that a collection

of similar style images is required to train a linear SVM in
approximating the boundary in the latent space of a NST
encoder. As the development of image search, i.e. Google
Image Search 3, collecting images with similar styles should
not be a huge burden to a service provider who aims to
leverage the adjustable stylization as a product for other
users.

7. Conclusion
This paper demonstrates that different regions in the la-

tent space of an NST model are related to the different styl-
ization of the generated output image. By learning an SVM
in the latent space, we can determine the corresponding
boundaries of these regions. By projecting a latent vector
into a particular region, we show that the output image can
be manipulated in the desired way. Our method is efficient
and universal to any NST pipeline that produces a latent
space. Given the better performance and simplicity of our
method, we believe there are substantial spaces for more
improvements in the follow-up work.

References
[1] Jie An, Haoyi Xiong, Jiebo Luo, Jun Huan, and Jinwen Ma.

Fast universal style transfer for artistic and photorealistic ren-
dering. ArXiv, 2019. 2

3https://www.google.com/imghp?hl=en

1922

[2] Mohammad Babaeizadeh and Golnaz Ghiasi. Adjustable
real-time style transfer. In International Conference on
Learning Representations, 2020. 6, 7, 8

[3] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Infogan: Interpretable rep-
resentation learning by information maximizing generative
adversarial nets. arXiv preprint arXiv:1606.03657, 2016. 1

[4] Yingying Deng, Fan Tang, Weiming Dong, Wen-Cheng Sun,
Feiyue Huang, and C. Xu. Arbitrary style transfer via multi-
adaptation network. Proceedings of the 28th ACM Interna-
tional Conference on Multimedia, 2020. 2

[5] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2414–2423, 2016. 1, 2, 5

[6] Shuyang Gu, Congliang Chen, Jing Liao, and L. Yuan.
Arbitrary style transfer with deep feature reshuffle. 2018
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018. 2

[7] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 1501–1510, 2017. 2, 3, 5

[8] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016. 2

[9] Tero Karras, S. Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4396–4405, 2019. 8

[10] K.Nichol. Painter by numbers, wikiart, 2016. 2, 4, 5
[11] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Universal style transfer via feature
transforms. arXiv preprint arXiv:1705.08086, 2017. 1, 5

[12] G. Puy and P. Pérez. A flexible convolutional solver for fast
style transfers. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 2

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 2, 4, 5

[14] Artsiom Sanakoyeu, Dmytro Kotovenko, Sabine Lang, and
Bjorn Ommer. A style-aware content loss for real-time hd
style transfer. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 698–714, 2018. 2, 5

[15] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. In-
terpreting the latent space of gans for semantic face editing.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9243–9252, 2020. 1,
3

[16] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 4

[17] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Vic-
tor S Lempitsky. Texture networks: Feed-forward synthesis
of textures and stylized images. In ICML, 2016. 2

[18] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion, 2017. 8

[19] Vladimir Vapnik, Isabel Guyon, and Trevor Hastie. Support
vector machines. Mach. Learn, 20(3):273–297, 1995. 1, 3

[20] Shuai Yang, Zhangyang Wang, Z. Wang, N. Xu, Jiaying Liu,
and Zongming Guo. Controllable artistic text style trans-
fer via shape-matching gan. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 4441–4450,
2019. 8

1923

