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Abstract

Image deblurring is a classical computer vision problem

that aims to recover a sharp image from a blurred image.

To solve this problem, existing methods apply the Encode-

Decode architecture to design the complex networks to

make a good performance. However, most of these methods

use repeated up-sampling and down-sampling structures to

expand the receptive field, which results in texture informa-

tion loss during the sampling process and some of them de-

sign the multiple stages that lead to difficulties with con-

vergence. Therefore, our model uses dilated convolution to

enable the obtainment of the large receptive field with high

spatial resolution. Through making full use of the differ-

ent receptive fields, our method can achieve better perfor-

mance. On this basis, we reduce the number of up-sampling

and down-sampling and design a simple network struc-

ture. Besides, we propose a novel module using the wavelet

transform, which effectively helps the network to recover

clear high-frequency texture details. Qualitative and quan-

titative evaluations of real and synthetic datasets show that

our deblurring method is comparable to existing algorithms

in terms of performance with much lower training require-

ments. The source code and pre-trained models are avail-

able at https://github.com/FlyEgle/SDWNet.

1. Introduction

With the increasing ease of access to images, it is in-

evitable that blurred images will be obtained in different

ways. It is increasingly important to eliminate the blur

and restore a clear image. Since the process of image

blurring is a one-to-many process, image deblurring is a

notoriously difficult ill-posed problem in the field of im-
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Figure 1. Schematic diagram of current mainstream network archi-

tecture. (a). Encode-Decode structure. (b). Generating adversarial

network (GAN) structure (c). Coarse-to-fine structure structure.

(d). Ours

age processing [1]. To address this problem, a number of

optimization-based [2, 3, 4, 5, 6, 7, 8] and learning-based

methods [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] have been

proposed to learn the mapping function between the clear

image and blurry image pairs. Most traditional deblurring

methods [5, 6, 7, 8] tackle this problem via estimating blur

kernel. Due to blur kernels in natural images are very com-

plex, estimating the best blur kernel is a very tricky task.

Therefore, inaccurate estimation of blur kernels results in

poorly recovered images.

Recently, the convolution neural network-based (CNN-

based) algorithms achieve remarkable progress in image de-

blurring. Gong et al. [11] employ estimated dense motion
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flow maps to help the model learn the mapping between

clear and blurred images. Then, Nah et al.[12] propose a

multiscale loss function to implement a coarse-to-fine pro-

cessing method and achieve good performance. However,

this network is complex and very difficult to train. To ad-

dress the difficulty of training, Tao et al. [13] and Gao

et al. [14] improve the work by using shared network

weights between different scales to achieve excellent per-

formance. On this basis, Zhang et al. [20] propose an

end-to-end CNN multilayer model similar to spatial pyra-

mid matching. Kupyn et al. [16, 17] propose Deblur-

GAN and DeblurGAN-v2 based on adversarial learning to

recover more realistic texture details from the blurry image.

Shen et al. [18] propose a human-aware attentive deblurring

network to remove the motion blur between foreground hu-

mans and background. Suin et al. [19] propose an efficient

deblurring design built on new convolutional modules that

learn the transformation of features using global attention

and adaptive local filters to achieve superior performance.

However, significant challenges remain in single image de-

blurring, as follows:

1. Most of the above methods employ an Encode-Decode

structure to learn the features of different receptive

fields, as in Figure 1 (a). However, the repeated up-

sampling and down-sampling contained in the Encode-

Decode structure results in the loss of texture details,

which affects the recovery of the image seriously.

2. Some current image deblurring methods use GAN

structures to obtain realistic texture details, as in Figure

1 (b). Since the GAN structure requires a joint gener-

ator and discriminator for training, it leads to unstable

network performance.

3. Most current image deblurring methods tend to design

a coarse-to-fine structure to achieve superior PSNR

performance, as shown in Figure 1 (c). However,

coarse-to-fine structures are often very complex and

computationally intensive resulting in a slow conver-

gence process.

In this paper, we address the above challenges using the

method of dilated convolution and wavelet transform. We

propose a novel image deblurring method that exploits the

deblurring cues at different receptive filed via a dilated con-

volution model. Specifically, we propose a simple yet effi-

cient end-to-end CNN model in the wavelet domain called

straight dilated network with wavelet transformation (SD-

WNet), as in Figure 1 (d). It consists of the dilated convo-

lution module and the wavelet reconstruction module. The

dilated convolution module uses dilated convolution to ob-

tain a larger field of perception for this network. This helps

the model to capture similar features at a distance and thus

facilitates image recovery. The wavelet reconstruction mod-

ule provides additional information for spatial domain re-

construction by exploiting the frequency domain properties

of the wavelet transform. Extensive experiments and ab-

lation analysis demonstrate that with the assistance of the

dilated convolution module and the wavelet reconstruction

module, our SDWNet can achieve state-of-the-art perfor-

mance.

The contributions of this work are summarized as fol-

lows:

• We propose a dilated convolution module. Unlike

previous deblurring networks that use repeated up-

sampling and down-sampling to obtain large receptive

fields, we use the dilated convolution with different di-

lated rates to obtain features with different receptive

fields. This module facilitates the network to capture

non-local similar features and recovers a clear image.

• We propose a wavelet reconstruction module. Instead

of performing deblurring in a single spatial/frequency

domain, we use the information recovered in the fre-

quency domain to complement the spatial domain, so

that the recovered image contains more high-frequency

details.

• We propose a novel CNN-based image deblurring

method. Different from previous deblurring methods

that use a coarse to fine structure, we use a simple and

streamlined structure to achieve results that are com-

petitive with state-of-the-art methods. This structure

effectively solves the problem of difficult training and

slow convergence.

2. Related Work

2.1. Deep Image Deblurring

Recently, deep learning methods have achieved remark-

able success in low-level computer vision tasks including

image denoise [21], image super-resolution [22, 23, 24],

and image deblurring [9, 12, 13, 16, 17]. Many researchers

tend to use deep learning methods to design an end-to-end

model to achieve excellent performance. Sun et al. [9] de-

sign a CNN-based model to remove non-uniform motion

blur by estimating the blur kernel. Due to the complex-

ity of blurring in real scene images, the blur kernel estima-

tion does not remove the fuzziness completely. Many deep

learning-based methods tend to predict clear images di-

rectly from blurred images. Nah et al. [12] propose a multi-

scale CNN model using a coarse-to-fine strategy, which can

directly recover latent images without assuming any blur

kernel. Because this network does not share parameters at
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Figure 2. Network architecture of our proposed SDWNet.

different scales, it leads to increased computation and in-

ference time. To address this problem, Tao et al. [13] pro-

pose an encoder-decoder structure with jump connections

and parameter sharing at three scales, which effectively re-

duces computational effort and achieves better deblurring

performance. Kupyn et al. [16, 17] propose DeblurGAN

and DeblurGAN-v2 using adversarial learning and pyrami-

dal structures to effectively recover clear images. Most of

these networks perform alternate down-sampling and up-

sampling of deep features to obtain large fields of percep-

tion. However, alternate up-sampling and down-sampling

can cause a lot of information to be lost in the image re-

covery process, resulting in poor image recovery results. To

address this problem, we use dilated convolution with dif-

ferent dilated rates to obtain information about the different

receptive fields, thus making the recovered image clearer.

2.2. Dilated Convolution

Dilated convolution can obtain data features of different

receptive fields by the jump step size and keeps the param-

eters constant. On this basis, dilated convolution has been

successfully applied in many advanced vision tasks. Yu et

al. [25] introduce dilated convolution for use on semantic

segmentation, which significantly improves the segmenta-

tion performance. Zhou et al. [26] propose a cascade di-

lated module for medical image segmentation using convo-

lutional layers with different dilated rates. Then, Brehm et

al. [27] introduce dilated convolution to the task of image

deblurring and achieved excellent performance. They de-

sign an atrous convolution block using different dilated rates

to recover sharper images. Due to the dilated rate of the

atrous blocks follows the semantic segmentation method,

the network does not completely cover all the pixel points,

resulting in a still blurry image. We are inspired by their

network and carefully adjust the dilated rate to obtain al-

most complete coverage of the receptive field.

2.3. Related Application based on WT

The wavelet transform is widely used in image process-

ing tasks because it separates high-frequency information

from low-frequency information in an image and is re-

versible. Many researchers introduce wavelet transforms

into image restoration tasks [28, 15, 24]. Min et al. [28]

use the wavelet transform to separate the frequency infor-

mation from the blurred image and then recover the image,

effectively weakening the smoothing characteristics of the

image. Zhang et al. [15] propose double discrete wavelet

transform to enhance the blurred image processing capabil-

ities. Liu et al. [24] propose a multilayer wavelet CNN

using the U-Net structure, resulting in a clearer recovered

image. These methods all use a direct mix of all frequency

information, leading to problems with different frequency

information interacting with each other and creating wrong

textures. Therefore, we propose a wavelet transform recon-

struction module that effectively recovers a clear image.

3. Proposed Method

3.1. Framework

In this section, we describe our proposed straight dilated

network with wavelet transformation in detail. Since com-

plex models can bring problems such as unstable training

and slow convergence, thus we used a plain network struc-

ture, as shown in Figure 2. Our SDWNet mainly consists of

three parts: the shallow feature extraction layer, the dilated

convolution (DC) module, and the reconstruction module.

To obtain a larger perceptual field, we first utilize a ker-

nel size of 7 × 7 convolution to extract shallow features.

Inspired by the [26], we propose the dilated convolution

blocks for fusing multi-receptive field information by using

different dilated rates. Then, our network uses cascading

multiple DC blocks to learn the broad contextual informa-

tion. Due to the wavelet transform is an effective tool for re-

covering high-frequency information, we propose a wavelet

reconstruction module as a parallel reconstruction branch,

1897



thereby preserving the desired fine texture in the final out-

put image.

Unlike the cascade of multiple dilated convolution

blocks with the same dilated rate in [26], we designed two

dilated convolution blocks with different dilated rates to

obtain richer receptive field information. Besides, we add

jump connections to make full use of the information from

the shallow features. Instead of other wavelet transform

methods that predict the four frequency subbands directly,

our method uses a shared network to recover the four fre-

quency subbands separately, thus effectively avoiding arti-

facts caused by the interaction of different frequency sub-

bands.

Given an input blurred image Iblur, the proposed model

predicts a residual image R to which the degraded input im-

age Iblur is added to obtain: X = Iblur + R. We optimize

our SDWNet with the following loss function:

Ltotal = Lchar(X,Y) + λ ∗ Lssim(X,Y), (1)

where Y represents the ground-truth image, and Lchar is

the Charbonnier loss [29]:

Lchar =
1

N

N
∑

i=1

√

||Xi − Yi||2 + ϵ2, (2)

with constant ϵ emiprically set to 10−3 for all the experi-

ments. In addition, Lssim is the ssim loss, defined as:

Lssim =
1

N

N
∑

i=1

SSIM(Xi,Yi), (3)

where SSIM(·) denotes the SSIM [30] operator. The pa-

rameter λ in Eq. (1) is a hyper-parameter used to control the

composition of the SSIM loss function. The following ex-

periments will verify it. Next, we describe each key element

of our method.

3.2. Dilated Convolution Module

We now give more details about our proposed dilated

convolution module, which contains n dilated convolution

blocks (DCB). The DC Module is formulated as:

Fn = Hn
DCB(H

n−1

DCB(· · ·H
1

DCB(F0) · · · )), (4)

where Hn
DCB denotes the function of n-th DCB. Fn and F1

represent the input and output of the DC Module. DCB is

composed of multiple dilatied convolutions with different

dilated rates in parallel, as shown in Figure 3. It can be

expressed as follows:

Fdr 1 = Hdr 1(Finput), (5)

Fdr 2 = Hdr 2(Finput), (6)

Fdr 4 = Hdr 4(Finput), (7)

Fdr 8 = Hdr 8(Finput), (8)

Fdr cat = Concat(Fdr 1, Fdr 2, Fdr 4, Fdr 8), (9)

C +

dilated rate=1

dilated rate=2

dilated rate=4

dilated rate=8

dilated rate=1
Input Output

Figure 3. The architecture of our proposed dilated convolution

block (DCB). We control the output of the different receptive fields

by modifying the dilated rate of the intermediate parallel dilated

convolution. We set the dilated rate to {1, 3, 5, 7} in the last layer

of DCB. All other DCB dilated rates are set to {1, 2, 4, 8}.

where Hdr 1, Hdr 2, Hdr 4, and Hdr 8 denote dilated con-

volution operations with dilated rates of 1, 2, 4 and 8, re-

spectively. Fdr 1, Fdr 2, Fdr 4, and Fdr 8 denote the output

of dilated convolutions with different dilated rates. Inspired

by [31], we attach fine-grained control on receptive fields.

On shallow layers, we adopt regular dilated rates of 1, 2, 4,

and 8. On the last layer, we adopt a non-overlapped dilated

rate of 1, 3, 5, and 7 to avoid gridding effects for the image

deblurring tasks. Then, we use a dilated convolution with

a dilated rate of 1 to fuse features from different receptive

fields. Finally, we superimpose the fused features onto the

input features to get the output. The output features can be

written as:

Ffuse = Hfuse(Fdr cat), (10)

Fout = Finput + Ffuse, (11)

where Hfuse denotes the dilated convolution used to fuse

the features. Ffuse and Fout denote the fused features and

output features.

3.3. Wavelet Reconstruction Module

The wavelet reconstruction module (WRM) mainly uses

the wavelet transform to convert spatial domain information

to the wavelet domain for recovery. As shown in Figure

4, the input feature Finput can be divided into four differ-

ent frequency sub-bands by the discrete wavelet transform.

These frequency sub-bands can be defined as follows:

{FLL, FLH , FHL, FHH} = DWT(Finput), (12)

where DWT(·) denotes the operation of the discrete wavelet

transform. FLL, FLH , FHL, and FHH denote the feature of

four frequency sub-bands, respectively. To avoid interfer-

ence between the different frequency subbands, each of the
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Figure 4. The architecture of our proposed wavelet reconstruction

module (WRM). We decompose the input features into four fre-

quency subbands by the wavelet transforms: LL, LH, HL and

HH.Then, the corresponding frequency sub-bands are recovered

by three-layer convolution. The final output is obtained using the

wavelet inverse transform.

four subbands is fed into a 3-layer convolutional network

for recovery. We can express it as:

FLL r = Hconv×3(FLL), (13)

FLH r = Hconv×3(FLH), (14)

FHL r = Hconv×3(FHL), (15)

FHH r = Hconv×3(FHH), (16)

where Hconv×3(·) denotes the 3-layer convolution network.

FLL r, FLH r, FHL r, and FHH r represent the four fre-

quency sub-band features recovered by the 3-layer convo-

lution network. We finally use the discrete wavelet inverse

transform to reconstruct the recovered frequency sub-bands

into output features Fout. It can be formulated as:

Fout = IDWT(FLL r, FLH r, FHL r, FHH r), (17)

where IDWT(·) denotes the discrete wavelet inverse trans-

form operation.

4. Experiments with Analysis

4.1. DataSet

The following are the training and test sets that we use:

The GoPro Dataset [12] uses the GoPro Hero 4 cam-

era to capture 240 frames per second (fps) video sequences,

and generates blurred images through averaging consecu-

tive short-exposure frames. It is a common benchmark for

image motion blurring, containing 3,214 blurry/clear image

pairs. We follow the same split [12], to use 2,103 pairs for

training and the remaining 1,111 pairs for evaluation.

The HIDE Dataset [18] is specifically collected for

human-aware motion deblurring and its test set contains

2,025 images. While the GoPro and HIDE datasets are syn-

thetically generated, the image pairs of the RealBlur dataset

are captured in real-world conditions.

𝐿([𝑊𝐿 ] + 1) ∗ ([𝐻𝐿] + 1)𝑊
𝐻

𝐿

𝑊
𝐻

𝐿 𝐿

（a）Sliding crop image （b）Compensated slicing （c）Cropped image

𝐿
Figure 5. Dataset sliding crop, where [·] denotes represents the

rounding down operation. (a) represents the cropping of a block

of size L × L from an image of species H × W . (b) indicates

compensatory cropping at the edges of images not covered in (a),

marked as green and yellow blocks. The result is (c) a series of the

cropped image.

The RealBlur dataset [32] has two subsets: (1).

RealBlur-J is formed with the camera JPEG outputs, and

(2). RealBlur-R is generated offline by applying white bal-

ance, demosaicking, and denoising operations to the RAW

images.

4.2. Dataset Sliding Crop

To further improve the robustness of the network, we

perform appropriate sliding window slicing on GoPro, as

shown in Figure 5. The GoPro dataset images are all

1280 × 720 resolution, so we use a step of 240 to perform

480 × 480 size sliding window slicing in the order of left,

right, top and bottom, and compensated slicing on the edge

part. Finally, we can crop out 24 patches from each image.

Thus, we can crop up to 50472 patches from the original

dataset.

4.3. Implementation Details

We implement all of the models using PyTorch [33]. Our

SDWNet is an end-to-end trainable network and requires

no pretraining. Compare with others methods, our network

needs fewer training epochs. In the training stage, we use

the AdamW [34] optimizer to train our model. We set the

input size to 416 × 416 and the batch size to 8. The ini-

tial learning rate of 4 × 10−4, and we use the Cosine An-

nealing strategy [35] to steadily decrease the learning rate.

Weights decay is setting as 1 × 10−4 for the regularization

model. We set the hyperparameter λ in the loss function

to 1. And, we use a data augmentation strategy of random

rotation, random flip, and RGB channel shuffle. We first

use the GoPro datasets to train 1500 epochs with the above

configuration. Then, we train 50 epochs on the GoPro crop

datasets with the best model to get the best results. Besides,

all experiments are conducted on the desktop computer with

two NVIDIA Tesla V100 GPUs.

4.4. Image Deblurring Results

Quantitative results. Quantitative analyses are per-

formed to evaluate the performance of the SDWNet for im-
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Figure 6. Qualitative comparison with the leading deblurring algorithms: SRN [13], DeblurGAN-v2 [17], Gao et al. [14], MTRNN [10],

and DBGAN [38]. From the figure, we can see that our method can generate the right and clear details of the image.

age deblurring. More precisely, we quantitatively assess the

average performance of PSNR and SSIM over GoPro and

HIDE datasets. We compare our SDWNet with the excel-

lent deblurring methods [5, 7, 36, 11, 16, 12, 37, 17, 10, 39]

of the past and the experimental results are shown in Ta-

ble 1. From Table 1 it can be seen that our method can

achieve better performance compared with other deblurring

methods. Compared with the previous DMPHN method,

our method achieves 0.16dB improvement in PSNR and

0.027 improvements in SSIM. It is worth noting that not
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Table 1. Quantitative comparisons of our models with the state-of-

the-art deblurring methods on GoPro [12] and HIDE [18] datasets

(PSNR(dB)/SSIM). Best and second-best results are highlighted

and underlined. ⊛ represents the training results of our method on

a cropped GoPro dataset.

Method
GoPro HIDE

PSNR↑ SSIM↑ PSNR↑ SSIM↑

Xu et al. [5] 21.00 0.741 - -

Hyun et al. [7] 23.64 0.824 - -

Whyte et al. [36] 24.60 0.846 - -

Gong et al. [11] 26.40 0.863 - -

DeblurGAN [16] 28.70 0.858 24.51 0.871

Nah et al. [12] 29.08 0.914 25.73 0.874

Zhang et al. [37] 29.19 0.931 - -

DeblurGAN-v2 [17] 29.55 0.934 26.61 0.875

SRN [13] 30.26 0.934 28.36 0.915

Shen et al. [18] - - 28.89 0.930

Gao et al. [14] 30.90 0.935 29.07 0.913

DBGAN [38] 31.10 0.942 28.94 0.915

MT-RNN [10] 31.15 0.945 29.15 0.918

DMPHN [39] 31.20 0.940 29.09 0.924

SDWNet(Ours) 31.26 0.966 28.99 0.957

SDWNet⊛(Ours) 31.36 0.967 29.23 0.963

Table 2. Deblurring comparisons on the RealBlur dataset [32] un-

der two different settings: 1). applying our GoPro trained model

directly on the RealBlur set (to evaluate generalization to real im-

ages), 2). Training and testing on RealBlur data where methods are

denoted with symbol ⋆. The PSNR/SSIM scores for other evalu-

ated approaches are taken from the RealBlur benchmark [32].

Method
RealBlur-R RealBlur-J

PSNR↑ SSIM↑ PSNR↑ SSIM↑

Hu et al. [40] 33.67 0.916 26.41 0.803

Nah et al. [12] 32.51 0.841 27.87 0.827

DeblurGAN [16] 33.79 0.903 27.97 0.834

Pan et al. [41] 34.01 0.916 27.22 0.790

Xu et al. [5] 34.46 0.937 27.14 0.830

DeblurGAN-v2 [17] 35.26 0.944 28.70 0.866

Zhang et al. [37] 35.48 0.947 27.80 0.847

SRN [13] 35.66 0.947 28.56 0.867

DMPHN [39] 35.70 0.948 28.42 0.860

SDWNet(Ours) 35.85 0.948 28.61 0.867

DeblurGAN-v2⋆ [17] 36.44 0.935 29.69 0.870

SDWNet⋆(Ours) 38.21 0.963 30.73 0.896

only does our method achieve the best performance on the

GoPro dataset, but it also achieves the best results on the

HIDE at the same time.

To demonstrate the generalization performance of our

method in real scenarios, we also perform experimental val-

idation on the RealBlur dataset, as shown in Table 2. Com-

pared to previous best deblurring methods, our SDWNet

achieves the best performance on the RealBlur-R dataset.

Our method achieves a 2.51dB PSNR performance gain on

the RealBlur-R dataset. On the RealBlur-J dataset, we ob-
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Figure 7. Study on the influence of λ. When λ = 1, the model

achieves best results.

tain similar PSNR and SSIM performance to the previous

best methods.

Visual results. A qualitative analysis of the effect of our

SDWNet on image deblurring compared with other meth-

ods is shown in Figure 6. We compare the visual deblur-

ring result of our method with the previous methods. To

fully demonstrate the superiority of our method, we have

zoomed in on the details in the image shown. It is worth

noting that many of the detailed textures in the blurred im-

age are difficult to determine. As a result, the repeated up-

sampling and downsampling process can cause the texture

orientation to change, which can affect image performance.

We solve this problem effectively by the dilated convolution

to enable the recovered details to be correct. Our method

also uses the wavelet transform to convert the features to

the frequency domain for recovery, ensuring full recovery

of high-frequency details. Therefore, our approach visual

results in superior performance. Using the second image in

Figure 6 as an example, the images recovered by the older

methods still have some blurring. The more recent methods

of the last few years have produced images with some error

texture. However, our proposed SDWNet can accurately

recover a clear image. It demonstrates that our method out-

performs other methods in qualitative analysis.

Performance and efficiency comparison. In addition to

the superior PSNR and SSIM of our model, we also com-

pare the parameters and running times of our method with

the previous methods. The results of the experiment are

shown in Table 3. Our method has competitive PSNR and

SSIM performance to other superior methods, but the pa-

rameters and FLOPs of our method are much smaller than

other methods, and our method is the fastest in Table 3. No-

tably, our method achieves better PSNR and SSIM perfor-

mance than DMPHN [39] using only one-third of the pa-

rameters and FLOPs of DMPHN [39]. It efficiently demon-

strates that the efficient deblurring performance of our net-

work structure.
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Table 3. Performance and efficiency comparison on the GoPro [12] test dataset. Runtimes are computed with the Nvidia Titan Xp GPU.

FLOPs are computed with the input size of 256× 256.

Method DeblurGAN-v2 [17] DBGAN [38] DMPHN [39] Suin et al. [19] MPRNet [42] SDWNet (Ours)

Params (M) 60.9 11.6 21.7 23.0 20.1 7.2

Flops (G) 411.34 660.2 678.56 536.74 660.2 181.31

Time (s) 0.21 0.83 1.07 0.34 0.18 0.14

PSNR 29.55 31.10 31.20 31.85 32.66 31.36

SSIM 0.934 0.942 0.940 0.948 0.959 0.967

Table 4. Model Policy with depths and widths on network perfor-

mance with an input of 96× 96

Model Setting PSNR SSIM

d = 10, w = 16 27.18 0.833

d = 10, w = 32 27.70 0.848

d = 16, w = 32 28.24 0.863

d = 20, w = 16 27.21 0.852

d = 20, w = 32 27.08 0.828

Table 5. Ablation studies on ELU, Bilinear, Wide, Dilated rate,

and WRM. The PSNR Performance on Gopro test dataset.
Operation ELU Bilinear Dilated rate WRM PSNR

Baseline

✘ ✘ ✘ ✘ 27.36

✔ ✘ ✘ ✘ 27.64

✔ ✔ ✘ ✘ 27.87

✔ ✔ ✔ ✘ 28.04

✔ ✔ ✔ ✔ 28.36

4.5. Ablation Studies

In this subsection, we design a series of ablation exper-

iments to analyze the effectiveness of each of the modules

we propose. We use the GoPro test set for evaluation and

performed 200 epochs of training on an image patch of size

96× 96.

Model Design Policy. We explore the impact of different

depths and widths on network performance, as shown in

Table 4. Where the depth represents the number of DCBs

we set and width represents the number of channels in our

intermediate features. As can be seen from the experimental

results, the width has a greater effect on our model than

the depth. Our model works best at d = 16 and w = 32.

Therefore, our final model is set to d = 16 and w = 32.

Effectiveness of Each Operation. We set up a base-

line of DCBs, where the activation function is ReLU and

the upsampling is deconvolution. We demonstrate the ef-

fectiveness of our proposed module by modifying the cor-

responding activation function and upsampling method, as

shown in Table 5. From the experiment, it is known that

the ELU activation function and bilinear upsampling ob-

tain better performance than ReLU and deconvolution. We

adjust the dilated rate of the last layer of the DC module

to help improve the performance of the network. And the

WRM can help the network recover high-frequency details

in the frequency domain, enabling network performance to

be improved. These comparisons show that our proposed

methods are useful for image deblurring.

Effectiveness of λ in Loss Function. We conduct trade-

off experiments for the Charbonnier loss and SSIM loss, as

shown in Figure 7. We find the optimal hyperparameter λ

by adjusting the value of the hyperparameter λ so that the

network performance can be optimized. We set the hyper-

parameters λ to 0, 0.1, 0.3, 0.5, 1 and 2 respectively. We can

notice from the graph that the best performance is obtained

when the hyperparameter λ = 1.

5. Conclusion

In this work, we propose a novel dilated convolution net-

work structure for image deblurring. For this structure, we

propose two modules: the dilated convolution module and

the wavelet reconstruction module. Specifically, the dilated

convolution module use dilated convolution with different

dilated rates, which effectively helps the network to ob-

tain different receptive field information. The wavelet re-

construction module exploits the properties of the wavelet

transform to provide high-frequency information for spa-

tial domain reconstruction, resulting in clearer images. The

quantitative and qualitative results show that our algorithm

can effectively restore a clearer image than other methods.

Our approach is simple in structure and easily transferable

to other high-level tasks. In the future, this approach will be

explored to facilitate other image restoration tasks such as

image denoising and super-resolution.
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