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1. Training and Evaluation Details
Training. For classical and lightweight image SR, fol-
lowing [29, 18, 17], we train SwinIR on 800 training im-
ages of DIV2K [1]. Some compared methods (e.g., [7],
[23]) further use 2560 images from Flickr2K [20] for train-
ing, so we also train SwinIR on larger datasets to investi-
gate whether SwinIR can further improve performance. For
fair comparison, we use 48 × 48 and 64 × 64 LQ image
patches respectively in above two cases following the com-
mon settings. The HQ-LQ image pairs are obtained by the
MATLAB bicubic kernel. The total training iterations and
mini-batch size are set to 500K and 32, respectively. The
learning rate is initialized as 2e-4 and reduced by half at
[250K,400K,450K,475K]. Unlike other Transformer-based
models that often uses AdamW [13] optimizer with cosine
learning rate decay strategy, we find that using Adam [10]
optimizer with β1 = 0.9 and β2 = 0.99 leads to better per-
formance.

For real-world image SR, we use the same image degra-
dation model as BSRGAN [28] and train it on a combi-
nation of DIV2K, Flickr2K and OST [22]. The model is
trained for 1,000K iterations for the PSNR training stage.
The learning rate is halved at [500K,800K,900K,950K].
For the GAN training stage, we train it for 600K iterations
and the learning rate is halved at [400K,500K,550K,575K].
Weighting parameters between L1 pixel loss, perceptual
loss and GAN loss are 1, 1 and 0.1, respectively. Note that
we use the same USM strategy, perceptual loss and GAN
loss as [21].

For denoising and compression artifact reduction, fol-
lowing [30, 27], we use 128 × 128 random crops from
the combination of 800 DIV2K images, 2650 Flickr2K im-
ages, 400 BSD500 images [2] and 4744 WED images [14].
We obtain noisy images by adding additive white Gaussian
noises (AWGN) with noise level σ, and compressed im-
ages by the MATLAB JPEG encoder with JPEG level q.
The total training iterations and mini-batch size are set to
1600K and 8, respectively. The learning rate is halved at
[800K,1200K,1400K,1500K]. Other details are the same as
image SR.

Evaluation. Following the tradition of image SR, we re-
port PSNR and SSIM [24] on the Y channel of the YCbCr
space. For image denoising, we report the PSNR on the
RGB channel and Y channel for color and grayscale de-
noising, respectively. For compression artifact reduction,
in addtion to the Y channel PSNR and SSIM, we also re-
port PNSR-B [25] that is specially designed for deblocking
quality assessment. Particularly, we pad the image in test-
ing so that the image size is a multiple of window size. We
also find that using a sliding window strategy [4] to crop
the image into patches can further improve the PSNR by
0.02 ∼ 0.03dB at the cost of longer testing time, so we do
not use it for comparison.

2. Results on image SR (×8)
We show the comparison on classical image SR (×8) in

Table 1.
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Table 1: Quantitative comparison (average PSNR/SSIM) with state-of-the-art methods for classical image SR (×8) on
benchmark datasets. Best and second best performance are in red and blue colors, respectively.

Method Scale Training
Dataset

Set5 [3] Set14 [26] BSD100 [15] Urban100 [8] Manga109 [16]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN [6] ×8 DIV2K 25.33 0.6900 23.76 0.5910 24.13 0.5660 21.29 0.5440 22.46 0.6950
VDSR [9] ×8 DIV2K 25.93 0.7240 24.26 0.6140 24.49 0.5830 21.70 0.5710 23.16 0.7250
LapSRN [11] ×8 DIV2K 26.15 0.7380 24.35 0.6200 24.54 0.5860 21.81 0.5810 23.39 0.7350
MemNet [19] ×8 DIV2K 26.16 0.7414 24.38 0.6199 24.58 0.5842 21.89 0.5825 23.56 0.7387
EDSR [12] ×8 DIV2K 26.96 0.7762 24.91 0.6420 24.81 0.5985 22.51 0.6221 24.69 0.7841
RCAN [29] ×8 DIV2K 27.31 0.7878 25.23 0.6511 24.98 0.6058 23.00 0.6452 25.24 0.8029
SAN [5] ×8 DIV2K 27.22 0.7829 25.14 0.6476 24.88 0.6011 22.70 0.6314 24.85 0.7906
HAN [18] ×8 DIV2K 27.33 0.7884 25.24 0.6510 24.98 0.6059 22.98 0.6347 25.20 0.8000
SwinIR (Ours) ×8 DIV2K 27.37 0.7877 25.26 0.6523 24.99 0.6063 23.03 0.6457 25.26 0.8005
SwinIR+ (Ours) ×8 DIV2K 27.47 0.7907 25.34 0.6546 25.03 0.6078 23.12 0.6499 25.42 0.8047
DBPN [7] ×8 DIV2K+Flickr2K 27.21 0.7840 25.13 0.6480 24.88 0.6010 22.73 0.6312 25.14 0.7987
SwinIR (Ours) ×8 DIV2K+Flickr2K 27.55 0.7941 25.46 0.6568 25.04 0.6092 23.17 0.6547 25.55 0.8132
SwinIR+ (Ours) ×8 DIV2K+Flickr2K 27.59 0.7952 25.51 0.6588 25.08 0.6104 23.27 0.6581 25.73 0.8167
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