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1. Training and Evaluation Details

Training. For classical and lightweight image SR, fol-
lowing [29, 18, 17], we train SwinIR on 800 training im-
ages of DIV2K [1]. Some compared methods (e.g., [7],
[23]) further use 2560 images from Flickr2K [20] for train-
ing, so we also train SwinlR on larger datasets to investi-
gate whether SwinIR can further improve performance. For
fair comparison, we use 48 x 48 and 64 x 64 LQ image
patches respectively in above two cases following the com-
mon settings. The HQ-LQ image pairs are obtained by the
MATLAB bicubic kernel. The total training iterations and
mini-batch size are set to S00K and 32, respectively. The
learning rate is initialized as 2e-4 and reduced by half at
[250K,400K,450K,475K]. Unlike other Transformer-based
models that often uses AdamW [13] optimizer with cosine
learning rate decay strategy, we find that using Adam [10]
optimizer with 5; = 0.9 and S, = 0.99 leads to better per-
formance.

For real-world image SR, we use the same image degra-
dation model as BSRGAN [28] and train it on a combi-
nation of DIV2K, Flickr2K and OST [22]. The model is
trained for 1,000K iterations for the PSNR training stage.
The learning rate is halved at [SO0K,800K,900K,950K].
For the GAN training stage, we train it for 600K iterations
and the learning rate is halved at [400K,500K,550K,575K].
Weighting parameters between L; pixel loss, perceptual
loss and GAN loss are 1, 1 and 0.1, respectively. Note that
we use the same USM strategy, perceptual loss and GAN
loss as [21].

For denoising and compression artifact reduction, fol-
lowing [30, 27], we use 128 x 128 random crops from
the combination of 800 DIV2K images, 2650 Flickr2K im-
ages, 400 BSD500 images [2] and 4744 WED images [ 14].
We obtain noisy images by adding additive white Gaussian
noises (AWGN) with noise level o, and compressed im-
ages by the MATLAB JPEG encoder with JPEG level q.
The total training iterations and mini-batch size are set to
1600K and 8, respectively. The learning rate is halved at
[800K,1200K,1400K,1500K]. Other details are the same as
image SR.

Evaluation. Following the tradition of image SR, we re-
port PSNR and SSIM [24] on the Y channel of the YCbCr
space. For image denoising, we report the PSNR on the
RGB channel and Y channel for color and grayscale de-
noising, respectively. For compression artifact reduction,
in addtion to the Y channel PSNR and SSIM, we also re-
port PNSR-B [25] that is specially designed for deblocking
quality assessment. Particularly, we pad the image in test-
ing so that the image size is a multiple of window size. We
also find that using a sliding window strategy [4] to crop
the image into patches can further improve the PSNR by
0.02 ~ 0.03dB at the cost of longer testing time, so we do
not use it for comparison.

2. Results on image SR (x8)

We show the comparison on classical image SR (x8) in
Table 1.
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Table 1: Quantitative comparison (average PSNR/SSIM) with state-of-the-art methods for classical image SR (x8) on
benchmark datasets. Best and second best performance are in red and blue colors, respectively.
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SRCNN [6] x8 DIV2K 25.33 0.6900 23.76 0.5910 24.13 0.5660 21.29 0.5440 22.46 0.6950
VDSR [Y] x8 DIV2K 25.93 0.7240 24.26 0.6140 24.49 0.5830 21.70 0.5710 23.16 0.7250
LapSRN [11] x8 DIV2K 26.15 0.7380 24.35 0.6200 24.54 0.5860 21.81 0.5810 23.39 0.7350
MemNet [19] x8 DIV2K 26.16 0.7414 24.38 0.6199 24.58 0.5842 21.89 0.5825 23.56 0.7387
EDSR [12] X8 DIV2K 26.96 0.7762 2491 0.6420 24.81 0.5985 22.51 0.6221 24.69 0.7841
RCAN [29] x8 DIV2K 27.31 0.7878 25.23 0.6511 24.98 0.6058 23.00 0.6452 25.24 0.8029
SAN [5] x8 DIV2K 27.22 0.7829 25.14 0.6476 24.88 0.6011 22.70 0.6314 24.85 0.7906
HAN [18] x8 DIV2K 27.33 0.7884 25.24 0.6510 24.98 0.6059 22.98 0.6347 25.20 0.8000
SwinIR (Ours) x8 DIV2K 27.37 0.7877 25.26 0.6523 24.99 0.6063 23.03 0.6457 25.26 0.8005
| SwinlR+(Qurs) | _x8 | _ DIVIK _ | 2747 | 07907 | 2334 | 06546 | 2503 | 06078 | 2312 | 06499 | 2542 | 05047 |
DBPN [7] %8~ | DIV2K+Flicki2K |~ 27.21 7| 70.7840 7| 25.13 | 0.6480 | 2488 | 0.6010 | 22.73 | 0.63127| 25.14 | 0.7987
SwinIR (Ours) X8 DIV2K+Flickr2K 27.55 0.7941 25.46 0.6568 25.04 0.6092 23.17 0.6547 25.55 0.8132
SwinIR+ (Ours) x8 DIV2K+Flickr2K 27.59 0.7952 25.51 0.6588 25.08 0.6104 23.27 0.6581 25.73 0.8167
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