
Test-Time Adaptation for Super-Resolution: You Only Need to
Overfit on a Few More Images

1. Supplementary Material
1.1. Training details

Generator’s architecture The architecture of the generator, based on [3], is shown in Figure 1. The generator is a feed-
forward CNN, consisting of convolutional layers and several residual blocks; the low-resolution image ILR is passed through
the first convolutional layer with a ReLU activation function and a 64 channel output. This output is subsequently passed
through 32 residual blocks. Each block has two convolutional layers with 3 × 3 filters and 256 channel feature maps. Each
one is followed by a ReLU activation. By using a long skip connection, the output of the final residual block is concatenated
with the features of the first convolutional layer and is then passed through two upsampling blocks, where each one doubles
the size of the feature map. Finally, the result is filtered by the last convolutional layer to get the super-resolved image ISR.
This setup aims at upsampling with a scale factor of four; the number of upsampling blocks could be modified based on
different scaling factors.

Fine-tuning In Fig. 1, the trainable convolutional layers are highlighted with the yellow box; other parameters are frozen.
This has be done specifically to force the fine-tuning to make changes to the filters of the network’ feature extractor rather
than manipulating the upsampling layers of the network, thereby yielding a plausible solution. The fine-tuning is performed
with the mini-batches of 4 images, corresponding to random crops of 32×32 pixels from our constructed dataset. We choose
a relatively low learning rate of 1e− 4 for a gradual change in the network parameters.

R
el

u 

C
on

v 

R
el

u 

C
on

v 

+

C
on

v … 

k9n64s1 
k3n256s1 k3n256s1 

k3n256s1 

+ 

32 residual blocks 

C
on

v 

C
on

v 

P
ix

el
-s

hu
ffl

e 

x2 

k3n256s1 

LR 

SR 

C
on

v 

P
ix

el
-s

hu
ffl

e 

k3n256s1 

x2 

C
on

v 

k3n3s1 

Trainable layers during proposed fine-tuning Frozen layers 

Figure 1. The network architecture of the generator. We highlight (yellow bounding box) the feature extractor layers which have been
trained during fine-tuning stage, while keeping the other upsampling layers (purple bounding box) frozen.

Baseline with perceptual loss The generator used in this setting is the same as our PSNR-based approach.



The training is divided into two steps; first, the SR decoder was pre-trained with only the pixel-wise cost function for 20
epochs. Then, for the second step, we continue the training for 35 more epochs with a new loss function containing three loss
terms: 1- Pixel-wise loss (L1), 2- an adversarial loss (Ladv), and 3- the perceptual loss function [1] (Lvgg) using a layer of
the pretrained VGG-19 network [4]. The total loss can be formulated as follows:

Ltotal = αL1 + βLvgg + γLadv (1)

where α, β, γ and δ are the corresponding weights of the loss terms used to train our network, and as proposed by [5],
were set to 1e− 2, 5e− 3 and 1, respectively. The Adam optimizer [2] was used during both steps. The learning rate was set
to 1e− 3 and then has been decayed by a factor of 10 every 20 epochs. We also alternately optimized the discriminator with
similar architecture and settings to those proposed by [5].

1.2. Effect of different convolutional layers

In this section, we investigate the effectiveness of using different convolutional layers of the VGG network in our ap-
proach. Specifically, we show results using the conv2, conv4, and conv5 layers in Fig. 2. We base our selection on the
visual/perceptual quality of the outputs. For example, we found that conv2 and conv5 produced suboptimal results compared
to other layers. Ultimately, based on the visual/perceptual quality, we chose to use the conv3 layer.
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Figure 2. Differences in the perceptual quality obtained at different VGG network layers including conv2, conv3, conv4, and conv5,
respectively.

1.3. Best values for K and M

In this section, we go more into detail about how we chose the number of images per filter K to construct our dataset
used in the fine-tuning and the number of filters M to consider with respect to the test image. We presented results using
K = 2,M = 5. We tuned these parameters based on the perceptual quality of the images generated by varying K and M
over a range of values. We focused on the best perceptual quality, as some decreases in PSNR/SSIM values are expected. In
Fig. 3, we show the results for the combinations generated by K = 1, 2, 5, 9 and M = 1, 2, 5, 10. We can observe that results
obtained by very few images for fine-tuning (e.g. K = 1 and M = 1) contain artefacts, while increasing both K and M
results in more realistic and appealing results (2 ≤ K, M ≤ 5). Finally, we note that increasing both K and M significantly
(K, M ¿ 5) produces blurry images, toward same solution as the EDSR baseline.

1.4. User study

To further prove the effectiveness of the proposed fine-tuning approach and its benefits against the baseline model, we
performed a subjective evaluation; in particular, 11 participants were asked to choose between three different reconstructions:
1- original model (pre-trained EDSR), 2- fine-tuned on random images, and 3- fine-tuned on images selected by our approach.
Each user evaluated 15 random images of ImageNet. To avoid random selection of similar images, a choice as “Cannot
decide” was also given. The results are shown in Table 1.4.
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Figure 3. Differences in the perceptual quality obtained with different combinations of K and M .

Baseline Fine-tuned Fine-tuned Cannot
(EDSR) (rand. images) (ours) decide

% of votes 9.09 2.42 71.52 16.97

Table 1. Results of the user study to further prove the effectiveness of the proposed fine-tuning approach; comparing: 1- original model
(pre-trained EDSR), 2- fine-tuned on random images, and 3- fine-tuned on images selected by our approach.



We will expand this study (in terms of number of participant) and will add it in the final manuscript.

1.5. Activation dataset

You can download the activation dataset here:

• Link to Activation dataset - Conv1

• Link to Activation dataset - Conv2

• Link to Activation dataset - Conv3

• Link to Activation dataset - Conv4

• Link to Activation dataset - Conv5

Each of the above links contains the top 9 activated images for the filters from a different convolutional layer of the
pre-trained VGG-19 [4] network. We provide both HR version and a LR version which is downsampled using the bicubic
downscaling kernel implemented in Matlab.
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