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A. Implementation Details
All the models are trained on an Nvidia Tesla V100 GPU. The model is implemented in PyTorch [16]. For Car3D, Chairs,

and Celeba, we set the size of the style embedding ds to 256, the size of the content embedding dc to 128, and the epoch to
200. All the images are resized to 64× 64. For the hyperparameters, wP = 5, wIB = 1, wID = 1. We used Adam [11] with a
learning rate of 0.0003 for the models and 0.003 for the latent spaces.

A.1. Experimental Details

Content Transfer Metric. For Car3D and Chairs datasets, the content labels (ground truth) are available. For images Ii
and Ij sampled from the testing set randomly, we compute L-PIPS [19] between Gθ(ci, sj) and the corresponding ground
truth from the same class of Ij . For CelebA, we randomly sample two images Ii and Ij with the same identity, and we retrieve
an image Ik that has the most similar pose to Ij from the test set, i.e., the nearest neighbor in the 68 facial-landmarks space.
We measure the similarity between Ij and Gθ(ck, si).

Classification Metric. Following [7], we train two models of a single fully-connected layer to classify content labels from
style embeddings and classify style labels from content embeddings.

A.2. Network Structure

Our Single C-S DisMo framework and Multiple C-S DisMo framework are shown in Figure 1. For the
details of the reparametric module R, please refer to Appendix C.3.

B. Baseline Details
For the datasets in the main paper, Car3D contains 183 car models, each rendered from 96 poses. Chairs consists of 1393

chair models, each rendered from 62 poses. CelebA contains 202,599 facial images of 10,177 celebrities.
For the baselines, we use open-source implementations for Cycle-VAE [7] 1, DrNet [4] 2, Lord [5] 3 and FactorVAE [10] 4.
For FactorVAE, we traverse the latent space to select the dimensions related to pose as content embedding and treat

the other dimensions as style embedding. For Wu et al.[18], there is no open-source implementation. We use the code
from https://github.com/CompVis/vunet, which uses ground truth landmarks as input instead of learning the
landmarks unsupervisedly. To achieve the pseudo ground truth landmarks, we use the face detection library [2] for Celeba. We
try to use the L1 and perceptual loss for all the baselines and select the best.

We split the datasets into training and testing sets. For Celeba, we randomly select 1000 among 10177 celebrities for
testing. For Car3D, we randomly select 20 among 183 CAD models for testing. For Chairs, we randomly select 100 among
1393 models for testing. For baselines with group supervision, only the training sets are used for training. For unsupervised
baselines and our method, all the datasets are used for training.

*This work was done when Xuanchi Ren was an intern at MSRA
†Corresponding author
1https://github.com/ananyahjha93/cycle-consistent-vae
2https://github.com/ap229997/DRNET
3https://github.com/avivga/lord-pytorch
4https://github.com/1Konny/FactorVAE

https://github.com/CompVis/vunet
https://github.com/ananyahjha93/cycle-consistent-vae
https://github.com/ap229997/DRNET
https://github.com/avivga/lord-pytorch
https://github.com/1Konny/FactorVAE
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(a) Single C-S DisMo framework
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(b) Multiple C-S DisMo framework
Figure 1. Details of network structure. For every upsampling layer, there is a 3× 3 convolutional layer following it. The embedding s1
and c1 from style and content embedding space respectively are first processed by the reparametric model R, then fed into the network in
different ways. Then the image Î1 is generated. The style and content latent space and network are jointly optimized under the supervision
of the reconstruction loss between synthesized image Î1 and ground truth image I1 from the dataset.



C. Technical Components
Here we present technical components that are helpful to the C-S disentanglement.

C.1. Information Bottleneck

Here we introduce more about the information bottleneck loss. For the information bottleneck, we determine the increase
steps and the maximum of the information capacity Cc and Cs by taking the training process of the model without the
information bottleneck as a reference. We can enhance the model inductive bias by tuning these parameters. For Chairs, we set
the maximum of Cc to 5, the start value of Cc to 2, the increase steps of Cc to 1.4× 105, γc to 1 and γs to 0. Note that our
model achieves state-of-the-art performance on Chairs even without information bottleneck.

C.2. Latent Optimization.

In the C-S disentanglement literature, it is common to use encoders to predict embeddings, while latent optimization [1, 5]
directly optimizes the embeddings via back-propagating without using encoders. Encoders have a large number of parameters
and require a lot more extra effort for training. Therefore, we adopt the latent optimization approach to update the latent spaces
directly.

C.3. Reparametric Module

Inspired by VAE [12], we design a reparametric module to force the latent space to be continuous. Thus, the embeddings
encoding similar information will get closer in the latent space. Assume we have a mean embedding µ with a standard
deviation σ, the reparametrized output is σX + µ, where X ∼ N (0, I) . To further simplify the problem, we set σ = 1
following Wu et al. [18] and Gabby and Hoshen [5]. The mean embedding is the input style or content embedding. The
reparametric module can make the latent space continuous, which is helpful for backpropagation.



D. More Ablation Study
Here we perform more ablation study for the technical modules.
If we use an amortized scheme instead of a latent optimization scheme, there are leaks between style and content latent space,

and the result is worse than latent optimization, as shown in Figure 2 (a) and (c). Furthermore, if we do not use a reparametric
module, we find the reconstruction performance is worse, as shown in Figure 2 (b). For the instance discrimination loss, the
comparison is shown in Table 2. The disentanglement is better with an instance discrimination loss. For the information
bottleneck, as shown in Table 1, the result with an information bottleneck is much better than the one without it.

(a) Amortized (b) w/o R (c) Ours
Figure 2. Ablation study. R indicates reparametric module.

Table 1. Ablation study for infomation bottleneck on Chairs dataset. Lower is better.

Method Content transfer

Ours (w/o Information Bottleneck) 0.280
Ours 0.190

Table 2. Ablation study for instance discrimination on Celeba dataset. Lower is better.

Method Content transfer

Ours (w/o Instance Discrimination) 0.165
Ours 0.161



E. More Results
In this section, we demonstrate more qualitative comparison and more qualitative results (including more datasets).

E.1. More qualitative experiments

In the main paper, for unsupervised baselines, we only compare our method with FactorVAE [10] limited to space. As
shown in Figure 3, we also outperform Wu et al. [18]. For Wu et al. [18], the disentanglement is poor, such that the content
embeddings control almost all the factors while the style embeddings control the tone.

For datsets in the main paper, We provide more qualitative results in Fig. 13, 14, 15, 16 and 17. Moreover, we also apply
our method on higher resolution images and achieve good performance, as shown in Figure 4.

Wu et al. Ours
Figure 3. Comparison between Wu et al. and our method. For Wu et al., the images are mainly determined by content embeddings, while
style embeddings only change the tone.

Figure 4. Results on Celeba with 128× 128 resolution. Zoom in for better view.



E.2. More datasets

Besides the datasets introduced in the main paper, we make additional experiments on other datasets: such as MNIST [13],
Cat [15, 20], Anime [3]. MNIST has 70k examples for 10 handwritten digits. Cat has 1.2k cat head images. Anime contains
63,632 anime faces. Market-1501 have 25,259 images. The results are shown in Figure 5, 6 and 7.

Figure 5. Results on the Cat dataset. Content indicates pose, and style indicates identity. The result further qualitatively demonstrates the
ability of our method to disentangle on real-world data.

Figure 6. Results on the MNIST dataset. Content indicates geometric attributes, and style indicates texture.



Figure 7. Results on the Anime dataset. Content indicates pose, and style indicates identity.



F. Comparison with Selected Related Work
Comparison with StyleGAN. In our framework, the optimized content (conv) and style embeddings are disentangled

representations of corresponding images. While StyleGAN [8] keeps the input of the convolution branch as a learnt constant
for the whole dataset and finds the feature space of the “style” branch has disentanglement ability. For StyleGAN2 [9] 5, we
select the subset of “style”, which represents pose, as the content embedding and the rest subset as the style embedding. As
shown in Figure 9, StyleGAN2 entangled pose with other semantic attributes, such as hair and glasses. As shown in Figure 17,
the content of our method on human faces is pose attribute without entanglement.

Comparsion with MUNIT & Park et al. [14]. Besides the comparison in the main paper, we provide more qualitative
comparison in Figure 8.

(a) MUNIT (b) Park et al. [14] (c) Ours (d) Our fine
Figure 8. Comparison with MUNIT [6] and Park et al. [14]. MUNIT [6] and Park et al. [14] learn the texture information which is different
from Ours (c). Our fine (d) is that we only exchange the fine styles.

StyleGAN2
Figure 9. Performance of StyleGAN2 [9] on human faces. For StyleGAN2, the content contains entangled semantic attribute, such as pose,
hair and glasses. In our case, the content is pose, which is a high-level semantic attribute of the object.

5We use the implementation from https://github.com/rosinality/stylegan2-pytorch.

https://github.com/rosinality/stylegan2-pytorch


G. More 3D Reconstruction
Our setting treats every image as a single identity (style) without ambiguity for augmenting single-view images. On Celeba,

we use MVF-Net [17] based on multi-view to reconstruct 3D facial shapes. For a given image, we can get the corresponding
style embedding content embedding. Then we can get the front, left, and right view of this image combining the extracted
style embedding and prepared content embeddings 6. As shown in Figure 10, our augmented multi-view images are consistent,
and the 3D meshes based on our method are more accurate than those based on Lord. As shown in Figure 11, we also provide
additional results for Chairs.

Ours ←− Input −→ Lord
Figure 10. 3D face reconstruction. Given an image, we first generate multi-view images and then use them as augmented input.

Input Our generated multi-view Single Ours GT
Figure 11. 3D reconstruction results on Chairs. We generate multi-view from Input. Single: the object reconstructed by only Input. Ours:
the object reconstructed by multi-view inputs. GT: the object reconstructed by the ground truth of multi-view inputs.

6We retrieve the nearest neighborhood (facial landmarks space) of suggested inputs of MVF-Net and extract content embedding.



H. Cross-domain Application
As shown in the main paper, the content and style are disentangled in a single domain, and we demonstrate the domain

transfer application without domain labels using our method. Furthermore, once the domain labels are given, we can disentangle
and align the cross-domain dataset. This experiment may be helpful for domain transfer and domain adaptation. We train
our model on the dataset that consists of Celeba and Anime. The model needs to be modified for learning cross-domain data:
concatenate the domain embedding sharing in the corresponding domain and the image-specific style embedding, take it as the
style embedding in the original model, and optimize all the embeddings during latent optimization. The results are shown in
Figure 12. The learned poses are well aligned both in the animation and reality domain.

Figure 12. Results of modified model on merged cross-domain dataset based on Celeba and Anime. The learned content embedding are well
aligned both in the animation and reality domain.



I. Proof
For the first term of Eq. 1 in the paper, we have

max
θ,ci,si

N∑
i=1

log P̂θ,si(x = Ii|c = ci), (1)

Here we assume P̂θ,si is a Gaussian distribution,

P̂θ,si(x|c = ci) =
1√
2πσ

exp

(
− 1

2σ2
‖x−Gθ(si, ci)‖22

)
. (2)

Combining Eq. 1 and Eq. 2, we have

max
θ,ci,si

N∑
i=1

(
− 1

2σ2
‖Ii −Gθ(si, ci)‖22

)
. (3)

Consequently, the final optimization target of the first term is

min
θ,ci,si

N∑
i=1

‖Ii −Gθ(zi)‖22. (4)

Q.E.D.



Figure 13. More visual anology of our method on Car3D.



Figure 14. More visual anology of our method on Car3D.



Figure 15. More visual anology of our method on Chairs.



Figure 16. More visual anology of our method on Chairs.



Figure 17. More visual anology of our method on Celeba.
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