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1. Introduction
This document includes supplementary information,

which will be published as a PDF linked to the primary ar-
ticle. This supplementary document presents the following
information that would be beneficial for the readers:

1. The principle of discrete wavelet transform

2. Additional ablation studies

• Additional ablation on the dilated rate of DC
module.

• Additional ablation on the different upsampling
methods.

• Additional ablation on the effect of input size on
the network.

3. The extended visual comparisons

2. The discrete wavelet transform
In practice, we usually use filter groups to implement

the DWT. The input signal obtains the different frequency
sub-bands through the corresponding high-pass filter H(n)
and low-pass filter L(n). We take the most commonly used
Haar wavelet [1] as an example, L(n) and H(n) of Haar
wavelet can be defined as:

L(n) =

{
1, n = 0, 1

0, otherwise
, H(n) =


1, n = 0

−1 n = 1

0 otherwise
,

(1)
Suppose we have an image x with the size of M × N ,

where M is the width, and N is the height. X[m,n] repre-
sents the pixel value of the image at position (m,n), where

*Equal contribution
†Corresponding author

n = 1, 2, 3, · · · , N , m = 1, 2, 3, · · · ,M . 2D-DWT could
be regarded as 1D-DWT is implemented in row X[:, n] and
column directions X[m, :] successively. The 2D-DWT de-
composes X into four frequency sub-bands, which could be
written as LL,LH,HL, and HH . The process of single-
level 2D-DWT for x could be represented as Figure. 1 and
the following formula:

X1,L[m,n] =

K−1∑
k=0

X[m, 2n− k]L1[k], (2)

X1,H [m,n] =

K−1∑
k=0

X[m, 2n− k]H1[k], (3)

where X represents the input image, X1,L[m,n] and
X1,H [m,n] are the results of 1D-DWT for each row.

X2,LL[m,n] =

K−1∑
k=0

X1,L[m,n][2n− k,m]L2[k], (4)

X2,LH [m,n] =

K−1∑
k=0

X1,L[m,n][2m− k,m]H2[k], (5)

X2,HL[m,n] =

K−1∑
k=0

X1,H[m,n][2m− k,m]L2[k], (6)

X2,HH [m,n] =

K−1∑
k=0

X1,H[m,n][2m− k,m]H2[k], (7)

Then, X2,LL[m,n], X2,LH [m,n], X2,HL[m,n], and
X2,HH [m,n] are obtained by the 1D-DWT for each col-
umn.
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Figure 1. The processing of 2D-DWT.

Table 1. The effect of the different dilated rate of DC module on
the network performance with an input of 96× 96.

Dilated rate PSNR SSIM

{1, 2, 3, 4} 26.45 0.7490
{1, 2, 4, 8} 26.52 0.7564
{1, 3, 5, 7} 26.46 0.7503
{1, 3, 5, 7}, {1, 2, 4, 8} 27.22 0.7722
{1, 2, 4, 8}, {1, 3, 5, 7} 27.35 0.7756

3. Additional ablation studies
3.1. The dilated rate of DC module

In the proposed architecture, we employ the dilated con-
volution (DC) module. Table 1 shows the impact of chang-
ing the dilated rate. From the experimental results it can be
seen that the multiple dilated rates is better than the single
dilated rate. We use the {1, 2, 4, 8} and {1, 3, 5, 7} dilated
rate settings to achieve good performance.

3.2. The different upsampling methods

To explore the effect of the upsampling method on the
network, we have added some ablation experiments, as the
table 2. We experimentally found that the upsampling of de-
convolution degrades the performance of the network. From
the experimental results it can be seen that the bilinear up-
sampling method can achieve best performance. Therefore,
we adopted the bilinear upsampling method, which effec-
tively achieves better performance.

3.3. The effect of input size on the network

We have experimentally explore the effect of different
input sizes on the network, as shown in Table 3. This is due
to the fact that our network uses dilated convolution to help
the network obtain a large receptive field, so the larger the
size of the input the better our performance. However, the
larger the input size, the larger the computer cost. There-
fore, we make a compromise between performance and in-

Table 2. The effect of different upsampling methods on the net-
work performance with an input of 96× 96.

Upsampling Method PSNR SSIM
Deconvolution 26.56 0.7566
Transpose convolution 26.39 0.7471
Pixel-Shuffle 26.51 0.7509
Bicubic 26.45 0.7484
Bilinear 26.71 0.7632

Table 3. The effect of different input size images on the network.
The following result is obtained from our training of 200 epochs.

Crop Size 128× 128 256× 256 320× 320 416× 416

Flops 45.33G 181.31G 283.29G 478.76G
Multi-Adds 120.34G 203.26G 317.6G 536.74G

PSNR 27.58 27.92 28.19 29.16
SSIM 0.834 0.836 0.845 0.858

put size and choose an image size of 416× 416 as the input
size used for our final training.

4. The extended visual comparisons
Here we test the performance of different image deblur-

ring methods on synthetic datasets. The visual results are
shown in Figures 2 and 3 on the GoPro datasets [7].
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Figure 2. Qualitative comparison with the leading deblurring algorithms: SRN [2], DeblurGAN-v2 [3], Gao et al.[4], MTRNN[5], and
DBGAN [6]. From the figure, we can see that our method can generate the right and clear details of the image.
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Figure 3. Visual qualitative comparison with the sate-of-the-art deblurring algorithms: SRN [2], DeblurGAN-v2 [3], Gao et al. [4],
MTRNN[5], and DBGAN [6]. From the figure, we can see that our method can generate the right and clear details of the image.
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