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Abstract

Despite their increasing demand for assistant and au-
tonomous systems, the recent shift towards data-driven ap-
proaches has hardly reached aerial domains, partly due
to a lack of specific training and test data. We introduce
the Aircraft Context Dataset, a composition of two inter-
compatible large-scale and versatile image datasets focus-
ing on manned aircraft and UAVs, respectively. In addi-
tion to fine-grained annotations for multiple learning tasks,
we define and apply a set of relevant meta-parameters and
showcase their potential to quantify dataset variability as
well as the impact of environmental conditions on model
performance. Baseline experiments are conducted for de-
tection, classification and semantic labeling on multiple
dataset variants. Their evaluation clearly shows that our
contribution is an essential step towards overcoming the
data gap and that the proposed variability concept signifi-
cantly increases the efficiency of specializing models as well
as continuously and purposefully extending the dataset.

1. Introduction

Detection and classification of aerial objects represents
an increasingly relevant research area with the aim to ex-
tend autonomy in surveillance and airport scenarios in-

volving various aircraft types ranging from large trans-
porters to small-scale unmanned vehicles. The application
of learning-based approaches has already been successfully
demonstrated in similar areas such as the ADAS domain
[4, 21, 36] indicating their potential in the aerial domain.
However, these methods require large amounts of train-
ing and test data specific to the use case. While extensive
datasets are available for other domains as well as arbitrary
collections of object categories [15, 8], there are no com-
parable datasets focusing on aerial vehicles. The few ini-
tial datasets existing in this area [45, 34, 6] provide neither
sufficient numbers of samples nor the required variability
regarding aircraft types and recording conditions. To mit-
igate this gap, we propose a novel dataset focusing on a
wide range of aerial vehicles and their environmental con-
text with the aim of facilitating robust scene understanding.
For this purpose, we provide a versatile set of annotations
enabling fine-grained classification, detection and seman-
tic labeling, as well as the basis for learning and evaluating
pose-estimation and multi-object tracking algorithms.

In short, this work contains the following contributions:

• We provide an extensive novel dataset focusing on
aerial objects along with fine-grained annotations for
multiple learning tasks. A special emphasis is placed
on covering a wide range of aircraft types includ-
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ing variants underrepresented in currently available
datasets.1

• We additionally present and apply a concept for meta-
annotation to measure dataset variability and the in-
fluence of environmental conditions on model perfor-
mance. We demonstrate their potential by training and
evaluating baseline models on multiple dataset vari-
ants.

2. Related work
Aircraft represent a common class in several existing

datasets, ranging from the first notable contributions in
the form of MSRC [26] and PascalVOC [8] to more re-
cent datasets such as PascalContext [44], MS COCO [15],
DOTA [35] and ADE20k [45]. However, since most pub-
lished datasets typically include only a low number of im-
ages containing aerial vehicles mixed with many out-of-
context categories and focus their annotation efforts on a
specific learning task, they do not provide sufficient image
data for training versatile models specialized for aerial ap-
plications.

Datasets for manned aircraft. One of the first datasets
focusing exclusively on aircraft is the FGVC Aircraft
dataset [17] containing 10k extracted patches equally dis-
tributed across 102 different aircraft models. Real and
semi-synthetic satellite images of aircraft are available in
the MTARSI [34] and RarePlanes [25] datasets. However,
due to a limited number of annotated models and the inher-
ent top-view perspective, they are not suitable for ground-
sensing applications.

Datasets for unmanned aircraft. Contrary to the
datasets described above, the term UAV dataset holds a cer-
tain degree of ambiguity, since it often refers to images cap-
tured by instead of showing the unmanned aerial vehicles
and therefore not relevant for this work [18, 3]. Available
datasets in the latter category range from small collections
focusing on the detection of UAVs as a single class [31, 6]
to larger ones also applicable for tracking such as the Am-
ateur Unmanned Air Vehicle Detection Drone Dataset [1].
One of the most recent contributions is made by [28] com-
bining RGB and IR data and focusing on the detection and
tracking of UAVs in low-resolution images. Furthermore,
UAVData [43] introduces a larger-scale dataset which dif-
ferentiates between 6 types of UAVs and a balloon class but
is not yet publicly available.

While the number of datasets for manned and unmanned
aircraft increased over the last years, there are still few com-
bining both. One of the few exceptions is presented by [23]
and provides 40 sequences divided equally between the two
categories and containing a total of 12k annotated instances.

1Annotations are available for academic research at
https://github.com/aircraftcontext/aircraft-context-dataset

Meta-annotation and robustness evaluation. Since the
application of deep neural networks is moving towards real-
time and safety-critical applications, a high amount of re-
search effort is directed at evaluating their robustness and
generalization ability under real-world conditions. While
many recent publications focus on both the construction
of [37, 33] and defense against [16, 41, 22] adversarial at-
tacks, there is also activity focusing on environmental fac-
tors such as weather conditions [20, 30] and time-of-day
variation [5], as well as various kinds of image corruptions
[11, 27]. Whereas these works mainly focus on benchmark-
ing trained models, there are also algorithmic evaluations
on the level of dataset coverage [29, 2, 19]. However, their
focus is usually on evaluating existing datasets, as opposed
to incorporating relevant meta-information into the dataset
itself. Datasets that do provide a form of meta-annotation
generally focus on attributes of depicted objects [25, 32] ap-
plicable for scene-understanding and zero-shot learning, or
provide only a limited set of coarse parameters concerning
basic properties such as occlusion, truncation or grouping
[15, 8, 12]. An incorporation of meta-parameters similar
to our approach is used in the WildDash dataset [42]. How-
ever, it is focused on semantic labeling in the ADAS domain
and mainly intended for benchmarking and testing accord-
ing to visual hazards.

3. The Aircraft Context Dataset
The introduced Aircraft Context Dataset (AC) provides

an extensive collection of images and annotations for mul-
tiple learning tasks in the aerial domain with a special em-
phasis on data variability and the inclusion of currently un-
derrepresented aircraft types. Conceptually, it consists of
two specialized subsets covering different target objects but
sharing a consistent annotation policy and a unified label
space. Despite their distinct characteristics, this approach
facilitates a seamless integration of arbitrary classes and
meta-annotations from both subsets for training and bench-
marking. On the one hand, the Manned Aerial Vehicle
(MAV) subset is focused on a wide selection of aircraft rang-
ing from small utility planes and helicopters to large-scale
passenger and transport jets covering both civilian and mil-
itary, as well as jet-propelled and propeller vehicles. The
Unmanned Aerial Vehicle (UAV) subset, on the other hand,
is specialized in remotely controlled and autonomous aerial
vehicles of all scales including copter and fixed-wing, as
well as amateur and semi-professional variants. The object
instances of each subset are assigned to the categories de-
picted in Figures 1 and 2, respectively, and enriched with
meta-annotations for context and environmental conditions.

Due to the required extent and versatility of the dataset,
a well-structured and consistent line of action was essential
throughout the entire processing chain, ranging from data-
harvesting activities over multiple annotation stages up to
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Figure 1. Iconic samples for the categories included in the MAV subset.

Figure 2. Iconic samples for the categories included in the UAV subset.

the experiments conducted for benchmarking purposes, as
detailed in the following subsections.

3.1. Harvesting and meta-annotation

Reaching sufficient data quantity for novel datasets of-
ten requires extensive capturing sessions and is typically a
resource-intensive and tedious process. However, the aerial
domain offers the advantage of a large active community
of aircraft-spotting and UAV enthusiasts creating publicly
available and often high-quality content suitable for the pur-
pose of this work. By building on this pool of input data, we
were able to dedicate our resources mainly to selecting the
most relevant samples and creating multi-modal annotations
for them, which will be in turn shared with the community
for application and further development.

Since some of the learning tasks targeted as future ex-
tensions such as multi-object tracking require continuous
image sequences as opposed to single frames, we chose
YouTube [38] as the primary source of our harvesting ac-
tivity. From the wide range of available video content for
the given domain recorded at diverse geographical loca-
tions, the annotation input is carefully selected to cover
a high variability regarding aspects such as aircraft types,
environmental and lighting conditions, as well as camera
and compression effects. A number of sequences depend-
ing on video length and relevance is extracted and the vis-
ible aircraft are assigned one of a standardized and contin-
uously expanded set of models consisting of manufacturer
and type. The resulting list of aircraft models is furthermore
enriched with meta-parameters such as length, wingspan
and weight.

Finally, the aircraft models are clustered into consis-
tent sets of super-classes. The 14 categories of the MAV
subset displayed in Figure 1 distinguish between differ-
ent permutations of application domains (business, com-

mercial, military, transporter, utility) and propulsion sys-
tems (helicopter, jet, propeller). To define the 9 categories
of the UAV subset visible in Figure 2, the same approach
is applied for the respective domains (amateur, military,
semi-pro) and available propulsion systems (copter, fixed-
wing, helicopter). Additionally, the UAV subset includes
meta-annotations for application tasks such as agriculture,
film/photography and racing.

3.2. Annotation

As shown in Table 1, more than 4k video clips were se-
lected and roughly cut into about 14k sequences based on
changes in aircraft type, video transitions or to remove sec-
tions which are highly redundant, inappropriate or out-of-
scope.

MAV UAV AC
Video clips 2 107 2 153 4 260
Image sequences 8 994 4 843 13 837
Total frames 13.8M 4.6M 18.4M
Extracted frames 32 292 15 078 47 370
Annotated frames 28 788 13 279 42 067
Object instances 37 442 13 834 51 276
Semantic masks 1 669 2 234 3 903

Table 1. Overview of samples and annotations of the MAV and
UAV subsets as well as the entire AC dataset.

Of the 18.4M frames extracted of these sequences, we
selected 47k containing at least one aerial vehicle. Al-
though the number of input videos is similar for both
subsets, twice the number of relevant sequences could be
extracted for MAV due to their recording characteristics.
While sequences provided by aircraft spotters usually focus
on recordings of the aircraft itself and often even contain
multiple models per video, those containing UAVs are typi-
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cally not as structured and include more irrelevant sections.
A minimum of two frames per sequence is extracted and in-
creased by additional samples for underrepresented classes
to counteract class-imbalance effects. Finally, bounding
boxes are created for all visible object instances, as well
as semantic masks for a balanced subset of them regard-
ing sequence coverage and class distribution. For the lat-
ter annotations, bounding-box sizes are doubled along both
dimensions to improve the learning of contextual relation-
ships while keeping the manual annotation effort in a rea-
sonable range. Poly-line masks are drawn for the resulting
image patches separating the aircraft from the defined con-
text classes apron/runway, building, indoor, sky, vegetation,
water and out-of-scope.

In total, the final dataset contains 42k images, along
with 51k annotated object instances applicable for detec-
tion and classification as well as almost 4k semantic masks.
Each sample is furthermore enriched with a set of relevant
variability parameters to enable a quantitative analysis of
dataset properties and benchmark their influence on model
performance:

Airborne differentiates between aircraft in flight and on
the ground. An aircraft is considered airborne, if none of its
parts touches the ground or is held by a person in case of
small UAVs.

Atmosphere describes weather conditions influencing
object appearance by differentiating between clear, fog,
rain and snow.

Context is assigned as up to two classes occurring in the
immediate background. Available context types are build-
ing, indoor, sky clear, sky cloudy and vegetation, as well as
undefined for backgrounds not corresponding to any avail-
able category. In addition the MAV dataset includes the con-
text types apron and runway to depict specific backgrounds
at airports. As opposed to the similar classes used for the
more detailed semantic masks, these serve as efficient con-
text cues for dataset analysis and model evaluation.

Degradation refers to the degree of visible image degra-
dation caused by effects such as compression, blur and sen-
sor noise, coarsely categorized as none, low and high.

Exposure separates well-lit object instances from those
lacking detail due to the effects of camera under- or overex-
posure.

Lighting is used to differentiate between sunny and dif-
fuse lighting conditions, resulting in either hard or soft shad-
ows and distinct or soft specular highlights, respectively.

Occluded is defined as a binary state indicating if at least
15% of the object is occluded by other objects or truncated
at the image border.

Size represents the maximum dimension considering ob-
ject length and wingspan coarsely clustered into the cate-
gories very small, small, medium, large and jumbo based
on commonly used standards [10]. This parameter can be

Figure 3. Instance distributions of domains and propulsion types
included in the MAV and UAV subsets.

inferred from the model type assigned to the object.
Weight is defined analogously as one of the categories

light, medium, heavy and super heavy for MAV and micro,
miniature and heavy for UAV.

Furthermore, the distinctions between aircraft Type,
Propulsion and Domain as well as Task for UAVs defined
during harvesting and meta-annotation (Section 3.1) are in-
corporated as additional variability parameters.

After image-level meta-annotations are defined during
the harvesting stage, all instance annotations are created
by our in-house annotation team using the open-source tool
Scalabel [24]. As a first step, bounding boxes and variabil-
ity parameters are assigned for each selected image, which
are then used as an input for the creation of semantic masks.
Finally, a cross-validation is performed between annotators.

3.3. Dataset analysis

To measure the applicability of our dataset to a broad
range of real-world scenarios, an extensive statistical analy-
sis concerning the distribution of both object categories and
variability parameters is conducted for both subsets. Fig-
ure 3 provides the distribution of instances for each domain
and propulsion type. While most categories are sufficiently
represented, there is a comparatively high ratio of commer-
cial jets, which directly relates to their overall frequency
of occurrence, especially at sites frequented by the aircraft-
spotting community. Combinations such as business pro-
peller and military copter, on the other hand, are not yet
present in sufficient numbers to robustly classify them as
separate categories. This distribution is used to define bal-
anced sets of super-classes for the dataset-ablation exper-
iments presented in Section 4.1. Furthermore, the statis-
tics are iteratively updated and used as a hint for expand-
ing the dataset. For example, in the course of the har-
vesting stage, we started to specifically include further in-
stances of helicopter variants to counteract their potential
under-representation leading to their current frequency in
the dataset.

In addition to the target categories, the distribution of
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Figure 4. Instance distribution by variability parameter of the AC dataset.

variability parameters displayed in Figure 4 gives further
insights into the dataset characteristics to be exploited for
testing and subsequently expanding the dataset with spe-
cific types of image samples. Currently, most parameters
are sufficiently represented and balanced to facilitate a ro-
bust analysis of their impact on model performance, includ-
ing a good coverage of the full range of aircraft sizes and
weights. One of the exceptions is presented by the atmo-
spheric effects relating to rain and snow, which are under-
represented and can therefore not yet be used for further
analysis. A significant advantage of the current dataset is
the overall balancing of relevant context classes allowing a
specific evaluation and tailoring of models for a given ap-
plication scenario.

Furthermore, beside obvious differences in object sizes
and weights, MAV and UAV differ in additional character-
istics mainly caused by their typical recording scenarios.
Since manned aircraft are more frequently captured in apron
areas, they tend to be more often occluded by other aircraft
and buildings and less frequently in an airborne state com-
pared to UAVs. Moreover, a slightly higher image quality is
visible in the exposure and degradation parameters for the
MAV dataset, which can be explained by the usually higher
quality of the used recording equipment. Furthermore, the
object instances of this subset have a strong tendency to-
wards the image center while UAV shows a more balanced
distribution of both bounding box positions and sizes. As
shown in Figure 5, objects depicted in MAV furthermore
tend to be larger and more rectangular in shape. Accumu-
lations on the right and top borders of both plots indicate
the occurrence of aircraft concurrently truncated at oppo-
site image borders.

4. Methodology

To showcase the relevance and versatility of our pro-
posed dataset, we conduct multiple machine-learning exper-
iments. A selection of dataset variants is derived and used
to train models for classification and object detection, which

Figure 5. Density distributions of instance widths and heights for
MAV (left) and UAV (right) subsets. Sizes are normalized to the
corresponding image resolutions.

will be evaluated thoroughly and combined accordingly in
Section 5. Furthermore, initial experiments are conducted
for the task of semantic labeling. All models are trained and
evaluated on a system with four NVIDIA RTX 2080 GPUs.
To ensure reproducibility, we provide a detailed description
of the methodology applied throughout the process in the
following subsections.

4.1. Dataset ablation

To demonstrate the flexibility of the Aerial Context
Dataset, several dataset variants are derived based on the
categorization and variability parameters described in Sec-
tion 3.2, and their subsequent analysis presented in Section
3.3. Each variant represents a restructured version of the
available data, merging defined sets of classes into super-
classes according to their common properties. The most
fine-grained dataset used in this work (ACFine23) is struc-
tured into the full set of 23 object categories displayed in
Figures 1 and 2. Merging the categories results in the
most coarse-grained variant (ACCoarse1) which simply dis-
tinguishes between the presence and absence of visible
aerial vehicles of any kind, as well as a slightly more differ-
entiated version distinguishing manned aircraft from UAVs
(ACCoarse2). Similarly, there are fine-grained variants for the
two subsets (MAVFine14, UAVFine9) along with their coarse-
grained counterparts (MAVCoarse1, UAVCoarse1). Addition-
ally, to showcase the potential of specializing the dataset for
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a specific application, three additional variants are derived
for each subset based on selected variability parameters
(MAVDomain5, UAVDomain3, MAVProp3, UAVProp3, MAVAirborne2,
UAVAirborne2, ACAirborne2) splitting the annotation into super-
classes according to the values available for the respective
parameter. While these dataset variants are selected due to
their relevance for real-world applications, an analogous ap-
proach could be applied for any of the presented variability
parameters. The resulting variants are used for both the de-
tection and classification experiments described in the fol-
lowing sections, with the addition of a negative class in the
latter case. For the semantic labeling experiments, we use a
reduced set of the available semantic context categories for
both subsets defined in Section 3.2.

4.2. Learning tasks

By defining and consistently using a unified format for
all annotations and variability parameters, we ensure max-
imum data compatibility and facilitate a seamless combi-
nation with multiple learning tasks. We selected network
architectures for classification, detection and semantic la-
beling to provide reasonable trade-offs between computa-
tional efficiency and accuracy. For all experiments, we use
random splits of 80:10:10 between training, validation and
test data on a per-sequence level to ensure the frames ex-
tracted from a sequence are exclusive to a single set. Fur-
thermore, identical sets are used for classification and detec-
tion to preserve independence between training and test data
when jointly evaluating both tasks. Standard randomized
data augmentation techniques such as horizontal flipping,
resizing and cropping are applied to each learning sample.
We use stochastic-gradient-descent optimization and adapt
the batch size to fit the available GPU memory. Classifica-
tion and detection experiments typically converge after 15
to 35 training epochs depending on dataset granularity and
size, while training semantic labeling takes up to 60 epochs.

Fine-grained classification. For this task, all dataset vari-
ants are extended by a negative class consisting of about
7k randomly extracted image regions of the original dataset
with a minimum size of 128x128 pixels not containing any
visible aerial vehicles. To counter-act an imbalance of ob-
ject context in the negative samples, the original input im-
ages for this process are limited to 100 exclusive samples
of the most frequent classes sky clear and sky cloudy. The
trained models are based on Dilated Residual Network [39]
with an input size of 256x256 pixels and an initial learn-
ing rate of 0.01 reduced by a factor of ten every ten epochs.
In addition to the data augmentation techniques described
above, we apply Gaussian blur to 10% of the samples,
which increases mean precision by up to 0.3% for coarse
and 4% for fine-grained dataset variants compared to the
application on raw data.

Object detection. Experiments are conducted using a
RetinaNet [13] implementation based on Feature Pyramid
Network [14] combined with a pre-trained ResNet50 [9]
classification backbone. Models are trained for all dataset
variants presented in Section 4.1 with an input size of
1280x720 pixels and a fixed learning rate of 10-5.

Semantic labeling. The experiments are based on Deep
Layer Aggregation [40]. Since there is an insufficient num-
ber of samples for the context classes water and indoor,
we omitted them in the selected dataset variants, thereby
reducing the list of target labels for both datasets to air-
craft, apron/runway, building, sky and vegetation. Each
input patch is augmented as defined above, but resized to
1344x704 pixels and then randomly cropped to a size of
576x576 pixels. We reduce the initial learning rate of 0.05
by a factor of ten every 20 epochs.

5. Evaluation
This chapter presents a detailed analysis of the experi-

ments described in chapter 4. As a first step, all classifi-
cation and detection models are evaluated separately using
established metrics in order to identify opportunities for ef-
ficiently combining tasks and dataset variants. Exemplary
combinations are then selected and analyzed in more detail
to quantify the influence of variability parameters on model
performance. The chapter is concluded by preliminary re-
sults of the semantic-segmentation models showcasing the
potential of future dataset extensions to facilitate a holistic
scene understanding.

5.1. Metrics

Classification experiments are evaluated based on the es-
tablished metric of F1-Score as the harmonic mean of pre-
cision and recall. To mitigate the inherent bias towards
strongly represented classes, we compute the mean F1-
Score across all available object categories including the
negative class. For object detection we use mean Aver-
age Precision (mAP) as described by [15] for comparability
with the COCO benchmark. Semantic labeling is evaluated
using mean Intersection over Union (mIoU) defined by [7].

5.2. Classification and detection results

An overview of evaluation results for classification and
detection experiments is presented in Table 2. In addition to
standalone classification results, detection is evaluated for
pure localization (LOC) by treating all available classes as
a single target, as well as in combination with the corre-
sponding classification (CLS) modules. The subscript Int
refers to the internal backbone of the detector, while Ext
combines each externally trained classification model with
the instances localized by the according Coarse1 variant.
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DETInt DETExt
CLSExt LOC CLS LOC CLS

MAVFine14 .739 .864 .520 .886 .622
MAVDomain5 .806 .876 .646 .882 .660
MAVProp3 .955 .897 .838 .890 .848
MAVAir2 .944 .800 .755 .896 .819
MAVCoarse1 .986 .917 .917 .893 .893
UAVFine9 .715 .673 .345 .774 .452
UAVDomain3 .773 .808 .506 .769 .445
UAVProp3 .925 .762 .703 .785 .703
UAVAir2 .878 .719 .532 .779 .542
UAVCoarse1 .986 .804 .804 .777 .777
ACFine23 .697 .803 .434 .848 .514
ACAir2 .938 .767 .693 .842 .737
ACCoarse2 .926 .838 .730 .849 .741
ACCoarse1 .996 .867 .867 .844 .844

Table 2. Results of models trained on all dataset variants for cor-
responding test sets: standalone classification as mean F1-Score
(first column) and detection as mAP. DETInt denotes detection by
internal classification backbone, DETExt coarse internal localiza-
tion combined with external classification (LOC: class-agnostic
localization, CLS: classification of localized objects).

Not surprisingly, classification performance significantly
increases as the number of target classes decreases through-
out the majority of experiments. Pure localization perfor-
mance, on the other hand, shows less variation since it is,
in theory, independent of the number of classes. How-
ever, coarser variants still show better localization results as
well, which can be explained by their entire capacity being
focused on this task instead of additionally learning fine-
grained differences between similar objects.

The results confirm that UAV represents the more chal-
lenging of the two subsets due to the properties discussed
in Section 3.3 including smaller object sizes, higher data
variability and lower image quality. Furthermore, classify-
ing the airborne state proves to be a more difficult task than
distinguishing propulsion types since the latter is based on
distinct object appearances as opposed to background vari-
ations with a higher number of border cases.

Overall, the best results are achieved by building upon
the localization of a coarse detection module and combin-
ing it with a more fine-grained classification. This further-
more presents the opportunity to apply a single detection
model and switch or even simultaneously combine multiple
classification models according to the use case, as shown in
Figure 6. Moreover, by using an external classifier trained
with a negative class, false positives generated by the lo-
calization step can be mitigated using this setup, which can
be exploited by using a more sensitive detector to achieve a
higher overall recall without sacrificing precision.

5.3. Impact analysis of data variability

In addition to the overall evaluation presented in the
previous section, a more thorough understanding of model
robustness under varying environmental conditions can be
achieved by incorporating the variability parameters de-
scribed in section 3.2. Filtering the test sets to exclusively
include instances matching the evaluated criteria, yields
parameter-specific mAP values. Table 3 summarizes the re-
sults of the configuration denoted as DETExt in the previous
section. It includes all variability parameters sufficiently
represented and not inherently biased by the definition of
target classes. The depicted values are offsets in mAP to the
overall performance per dataset variant presented in Table 2
and averaged per subset in the case of classification.

Some of the presented parameters can be influenced by
modifying the physical setup of the recording system, while
others are caused by environmental conditions and can only
be tackled by adapting the models or training data. The
strongest impact is visible for parameters in the former cate-
gory including image degradation and occlusion which can
be at least partially influenced by re-positioning the cam-
era viewpoint to avoid static objects and buildings in the
line of sight. By quantifying the model’s sensitivity to these
parameters, we can derive a strong priority for using high-
quality image input in potential applications, since model
performance significantly improves with lower degradation.
The influence analysis of atmospheric effects and lighting
expectably shows best performance in clear and sunny con-
ditions. The positive impact of the airborne state, on the
other hand, is not as intuitive, but can be explained by the
predominance of more distinct backgrounds such as sky and
vegetation. For the parameter of object context, values are
generally relatively high partially resulting from the domi-
nant ratio of samples in the apron and undefined categories
not included in the analysis. Nevertheless, a clear trend
is visible towards sky and vegetation backgrounds, while
buildings represents the most challenging context due to
their occasionally similar appearance to the target classes.

The impact analysis quantifies model robustness against
specific environmental factors and recording setups and
therefore provides a valuable basis for selecting models ac-
cording to application requirements and deriving bound-
aries for the conditions under which they can be expected
to work reliably. Furthermore, the results provide addi-
tional cues for specifically sampling training data, as well as
defining the focus of future dataset extensions. For exam-
ple, while models can always be expected to perform worse
under foggy conditions than in clear atmosphere, the im-
pact can be mitigated by either oversampling the accord-
ing instances during training or increasing their ratio in the
overall dataset by specific harvesting and annotation.
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State Atmo Object context Degradation Lighting Occlusion
ar nar cla fog clr cld veg bld ndg ldg hdg sun dif noc oc

MAVLOC 4.2 -4.3 3.2 -4.8 6.3 5.2 2.2 0.9 6.1 2.1 -13.6 1.1 0.0 5.1 -3.0
UAVLOC 2.1 -10.7 1.0 7.9 7.1 8.8 0.2 -0.9 -2.8 7.8 -4.1 1.2 -0.4 2.0 -18.3
ACLOC 5.0 -5.1 4.0 -0.8 10.1 8.1 1.2 -0.8 8.1 5.9 -10.3 3.0 0.0 5.1 -3.1
MAVCLS 1.6 -2.4 3.8 -6.8 2.1 0.6 0.9 2.2 5.4 1.6 -17.0 1.5 0.3 5.2 -8.2
UAVCLS 1.7 -7.9 0.0 -5.3 3.6 5.8 -2.5 -4.0 -2.1 5.9 -3.4 0.4 -0.2 1.8 -21.8
ACCLS 3.3 -4.9 4.8 -4.9 3.0 2.1 1.0 -5.1 7.6 3.5 -14.1 3.1 -0.8 4.6 -9.0

Table 3. Influence of variability parameters on model performance as absolute mAP variation for localization (LOC) and averaged over
external classification experiments (CLS): airborne (ar) and non-airborne (nar) state, clear (cla) and foggy (fog) atmosphere, sky-clear
(clr), sky-cloudy (cld), vegetation (veg) and building (bld) object context, no (ndg), low (ldg) and high (hdg) image degradation, sunny
(sun) and diffuse (dif ) lighting, non-occluded (noc) and occluded (oc) object.

5.4. Semantic labeling

We initially trained models including the five classes
described in section 4.2, achieving acceptable results for
the classes aircraft, sky and vegetation, while the mIoU of
building and apron/runway reached averages of 0.160 and
0.574, respectively. Therefore, we combined all categories
except the former three into a background class, which can
additionally be used as a fallback class for image areas not
assignable to one of the dataset categories. Evaluation re-
sults for experiments conducted on these dataset variants
(MAVSeg3 and UAVSeg3) are summarized in Table 4.

Aircraft Sky Veg Bg Overall
MAVSeg3 .750 .948 .798 .350 .712
UAVSeg3 .669 .878 .673 .527 .687

Table 4. Per-class and overall semantic labeling results (mIoU) on
selected dataset variants.

The current state of the dataset already provides a suffi-
cient basis for robustly differentiating between aircraft, sky
and vegetation for common use cases, while the remaining
classes should be specifically targeted during future exten-
sions. The slightly lower labeling quality of the UAV variant
is mainly due to a higher inherent diversity of appearance
regarding aircraft and their surroundings, whereas MAVs
are more often captured in the structured environment of
airports. However, both subsets show overall promising ini-
tial results, which are qualitatively depicted in Figure 6.

6. Conclusion
We introduced the Aerial Context Dataset, an extensive

collection of image data and multi-modal annotations for
manned aircraft and UAVs along with a rich set of variabil-
ity parameters. To demonstrate the potential of our dataset
and variability concept, baseline models were trained on
multiple dataset variants and thoroughly evaluated. Special
emphasis was directed at exploiting the variability annota-
tions to evaluate model performance under varying environ-

Figure 6. Qualitative results for classification, detection and se-
mantic labeling on MAV (top) and UAV (bottom) subsets.

mental conditions. Thereby, we were able to demonstrate
how useful insights for both optimizing training input and
further extending the dataset can be extracted with compar-
atively little additional annotation effort. Overall, we con-
clude that the dataset represents a vital step towards closing
the data gap in the aerial domain. As a next step, we plan
to use the insights gained during this work to coherently ex-
tend the dataset and mitigate any identified gaps, as well
as to apply the variability concept to other domains. In the
long term, we plan to complement the dataset with annota-
tions for pose estimation and multi-object tracking, which
are already considered in the design. In addition to exploit-
ing the variability parameters for dataset and model anal-
ysis, another promising research direction would be their
reformulation as a separate classification task to increase ef-
ficiency in dataset creation and improve failure awareness.
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