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Abstract

Recent work has demonstrated how physically realiz-
able attacks on neural network vision pipelines can consis-
tently produce misclassifications of a given target object. A
smaller body of work has also produced modifications that
can be applied directly to the neural network to generate in-
correct predictions. However, although these perturbations
are difficult to detect from examining the resulting images
themselves, they are obvious if any testing is done on the
network to check its accuracy. Here, we combine methods
from both these lines of work to generate attacks that can
be switched on or off. Specifically, we simulate a physically
realizable Trojaned lens to attach to a camera that only
causes the neural network vision pipeline to produce incor-
rect classifications if a specific adversarial patch is present
in the scene. This novel Optical Trojan is used to amplify
the effect of the adversarial patch so that we can achieve
similar attack performance with smaller and less noticeable
patches. To improve the robustness of our proposed method,
we take into account the fabrication process with quantized
lens parameters, deal with lens defocus using kernel scal-
ing, and make it resilient against noise caused by the cam-
era sensor readouts and test in various simulated settings.
Finally, we propose a simple yet effective approach to de-
tect such Trojaned lenses by analyzing the distributions of
benign and Trojaned kernels.

1. Introduction

Deep neural networks have transformed computer vi-
sion, elevating the ability of computational systems to per-
form important perceptual tasks to a level that sometimes
even exceeds human ability [18, 15, 12]. However, a num-
ber of vulnerabilities have been identified in deep neural
network architectures [29]. As a consequence, concerns
have emerged about their use in perceptual pipelines in
high-stakes applications, such as autonomous driving.
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1905558 and CNS-1739643, and ARO grant W911NF-19-1-0241.

A majority of research has focused on devising digital
attacks that make pixel-level perturbations directly to an im-
age [31]. As such attacks cannot be easily implemented in
a physical scene, increasing attention has been devoted to
physically realizable attacks, the main purpose of which is
to account for physical scene manipulation constraints be-
fore it is captured by the camera and transformed into a digi-
tal image [3, 4, 10, 26, 32]. Further, a number of efforts val-
idated such attacks in actual physical experiments [10, 26].

Typical physical attacks involve occlusions to objects in
a scene [32]. However, recently an attack that superimposes
a transparent sticker over a camera lens, with the idea of
introducing adversarial noise in the sticker to cause mis-
classification was proposed [20]. A similar idea was also
explored in defeating object detection [34]. While both of
these attacks effectively achieve their goals, they have two
major limitations. First, the attack is readily visible, since
it involves a sticker on top of the camera lens, and is thus
likely to be detected during quality control. Second, the uni-
versality of these attacks is also likely to lead to early detec-
tion: since they cause indiscriminate misclassification, one
can immediately identify that the lens has a problem.

Another, particularly pernicious, variant of attacks on
computer vision involves “Trojaning” (maliciously chang-
ing) the neural network in order to accomplish two goals:
1) remain undetected, by having little impact on accuracy
in classifying regular inputs, and 2) implement successful
targeted attacks when an adversarial patch (often termed
“trojan triggers”) is placed on target inputs (see second row
of Figure 1 for an example of adversarial patch/trojan trig-
ger) [8, 21, 14]. However, these attacks require either direct
access to training data, or direct access to the neural network
itself (to replace select neurons with trojaned variants).

We present a novel attack that relies on an Optical Tro-
jan embedded inside the camera lens as an adversarially
coded aperture filter, aiming to work together with adver-
sarial patches (trojan triggers) to launch targeted attacks
on image classification (see Figure 1). This attack demon-
strates that trojan attacks can be implemented by a mali-
cious modification of the camera lens itself in a way that
is not visually evident (since the filter is placed inside the
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Figure 1. We demonstrate our proposed method. Row 1 shows a classical representation of a DNN classifier without any attack. We say
qualitatively that this baseline has a high classification accuracy. Row 2 shows a traditional form of adversarial attack in the form of a small
patch which reduces classifier accuracy. Row 3 demonstrates the use of a lens with an adversarially coded aperture to boost the strength
of the patch attack. Row 4 shows that our model only degrades the accuracy of the classifier if an adversarial patch is present. The ∗
symbolises a convolution operation with the lens which we model as a kernel.

lens). We implement the attack by leveraging standard mod-
els of aperture filters as kernels that must satisfy specific
physical constraints. Our approach then treats such a ker-
nel as an additional layer in the neural network that is ad-
versarially optimized to work jointly with targeted input-
specific adversarial patches (see Figure 1). Central to our
approach is ensuring stealth of the attack by limiting mis-
classification errors on unperturbed inputs. We account for
the two conflicting goals of accurate predictions on clean
inputs and attack success on inputs with adversarial patch
as trojan trigger by explicitly trading these off in optimiz-
ing the lens filter kernel. Our experiments demonstrate that
the proposed Optical Trojan attack is indeed highly effective
at balancing these two goals, and is physically deployable
in real world by considering the constraints of lens fabri-
cation, optical blur, and camera sensor noise. Thus, it is
a credible stealthy supply chain threat in high-stakes com-
puter vision applications, such as autonomous driving, and
necessitates serious consideration in such applications. We
stress that our attacks have been done in simulation for a
proof of concept, to show this mode of attack is a viable
threat. To mitigate against this new trojan threat, we em-
pirically show a simple method to detect Optical Trojans by
leveraging the non-Gaussian nature of trojaned kernels and
known methods to estimate the lens kernel [23].

Related Work The vast majority of work studying vulner-
abilities of deep neural networks for computer vision appli-
cations has considered digital attacks where perturbations
are made directly to pixels in order to cause misclassifica-
tions [13, 6, 22, 31]. However, recently there have been
demonstrations that similar attacks can be implemented by
modifying the physical scene, such as wearing maliciously
designed eyeglasses [26], 3D printing malicious objects [1],
or placing stickers on a road or a road sign [3, 10].

More recently, another variation of physical attacks was
proposed [20, 34], in which a carefully crafted patch is in-
serted over the lens of a camera to fool the image classifier
or an object detector. The perturbed patch is comprised of
opaque dots which will be blurry spots in the final camera
image. Despite the effectiveness and universality of the ad-
versarial camera stickers, such stickers are easy to see, and
the attack’s universality also causes its early detection, since
the modified camera immediately fails.

Our proposed method is related to camera modification
attacks above, but is also closely related to backdoor (Tro-
jan) attacks [8, 21, 14], which aim not only to cause mali-
cious misclassification, but also to remain stealthy by accu-
rately classifying clean inputs. Our methods also utilize ex-
tensively established approaches for modeling and design-
ing coded aperture filters [19, 2, 7].
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2. Background: Adversarial Patch Attacks
Adversarial patch attacks, where an adversarially de-

signed sticker is placed on a target object in a scene to cause
misclassification by a deep neural network (second row of
Figure 1), build on standard techniques for generating ad-
versarial examples, which we briefly review. The common
mathematical objective function for generating the adver-
sarial examples can be described as follows. Given a clean
input x, a well trained targeted model f parameterized by
θ can correctly predict x’s true label y as argmax fθ(x).
The goal of adversarial attacks is to find a small perturba-
tion δ, where argmax fθ(x+δ) = ytarg , that is, the attack
causes a misclassification as a target class ytarg instead of
true class y. This is commonly formalized by optimizing
the following objective:

arg min
δ∈∆(ϵ)

L
(
fθ(x+ δ), ytarg

)
(1)

where L(·) is the cross-entropy loss function of the target
convolutional neural network f . δ ∈ ∆(ϵ) is the formal
mathematical definition of “small perturbation” and can be
represented as ∥δ∥p ≤ ϵ, where ϵ is the limit of an ℓp ball. A
standard technique for optimizing this objective is through
projected gradient descent (PGD) [22].

A common way to turn PGD attacks into physically re-
alizable attacks is by restricting the perturbation area to a
patch that can be placed on an object in the scene, com-
monly done by multiplying adversarial noise δ with a mask
during optimization. To ensure physical implementation,
additional considerations are important, such as printabil-
ity of the patch. We focus here on physically realizable
attacks that are implemented and evaluated in the digital
space (i.e., directly on images), since techniques for imple-
menting these physically are now standard [26, 4, 10].

3. Optical Trojan Attack
We now describe the proposed Optical Trojan attack. At

a high level, the attack is implemented as follows: A ma-
licious camera manufacturer or distributor replaces a cam-
era lens with a version that includes a Trojan aperture filter.
This filter is designed to work (nearly) at normal effective-
ness when coupled with a deep neural network for image
classification with clean (unperturbed) inputs. However,
when inputs include an adversarial patch, this patch acts as
a trigger, resulting in targeted misclassification by the same
neural network. The key to the Trojan attack is two-fold: 1)
model the aperture filter as a kernel of a convolutional layer
immediately following the input layer, and 2) optimize this
kernel jointly with the targeted adversarial patch attacks to
balance the success rate of such attacks while preserving
baseline accuracy on non-adversarial inputs. The flowchart
of our attack is shown in Figure 2.

3.1. Kernel Representation of the Aperture Filter
We begin by reviewing how the aperture filter can be

represented as a convolutional kernel that can be digitally
optimized. Modern cameras contain a finite-sized aperture
and focusing lens to mitigate optical blur. During capture,
the lens is focused at a specific focal distance, and part of
the scenes that are in-front of or behind the focal plane will
be affected by defocus blur. Taking advantage of this prop-
erty, [19] proposed the coded aperture method in which a
patterned mask was inserted into the aperture of the camera
lens to capture the depth information. For a fronto-planar
surface patch x at a depth d, the resulting observed image z
can be modeled by:

z = x ∗ kd, (2)

where ∗ denotes convolution with a kernel kd. The kernel is
the aperture shape, scaled by a factor ∝ (d−f)/f , where f
is the focal distance. Note that kd is assumed to be normal-
ized to sum to 1 (i.e., there is no change in the mean bright-
ness from the in-focus image, since this would be factored
into the camera’s exposure and ISO settings). Another re-
striction is that all values in the kernel must be non-negative,
since the aperture can only pass or attenuate light. Impor-
tantly, the coded aperture is relatively straightforward to de-
ploy and has been proposed by a number of researchers as
means to improve image capture [19, 30, 2, 33, 7, 5].

In this work, we develop an Optical Trojan attack, which
combines adversarial patches with an adversarially coded
aperture by making use of this now-standard kernel model
[19]. Specifically, in order to satisfy the normalization and
non-negativity constraints above, we represent the final ker-
nel k as the softmax of an input kernel t (which would be
zero-padded to fit the aperture), that is, k = σ(t). Next,
we describe how k can be adversarially optimized, jointly
with the adversarial patches. We also address a number of
practical issues that arise in implementing this attack.

3.2. Designing an Adversarial Kernel
Suppose that the adversary aims to subvert predictions

for a collection of J inputs xj (for example, sampled from a
target input distribution, such as scenes observed by driving
along a particular road segment, in the case of autonomous
driving). Let yj be the corresponding true labels for these
inputs, and ytargj the target labels that the adversary aims to
misclassify these as. To accomplish this goal, the adversary
will design an Optical Trojan kernel k = σ(t), as well as
a corresponding sequence of adversarial patches (or Trojan
triggers), δj . Note that the kernel k must by construction
be universal (that is, apply to all input scenes, both clean
and adversarially perturbed). In contrast, we can customize
each adversarial patch δj to a particular input xj . Since
adversarial patch attacks entail a fixed mask M which re-
stricts the area of the patch (in our case, to a square), the
actual patch that is added to the image is Mδj .
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Figure 2. A flowchart of the methodology of the our attack, showing our proxies for the corresponding real world processes.

Recall that in the Trojan attacks, stealth is a key goal,
in addition to adversarial success. We capture the trade-off
between these two criteria by adding a weight ω ∈ [0,∞)
which determines the relative importance of maintaining
overall prediction accuracy close to baseline (i.e., with a
regular lens). We assume that the attack targets a state-of-
the-art deep neural network fθ devised for the target task
and known to the adversary (i.e., we consider white-box at-
tacks [31]). We thus model the Optical Trojan attack as the
following optimization problem:

min
t,{δj}

∑
j

(
L(fθ((xj +Mδj) ∗ σ(t)), ytargj ) (3)

+ωmax(L(fθ((xj ∗ σ(t))), yj)− L(fθ(xj), yj)), 0)) ,

Note that it is straightforward to generalize this model. It
allows for batches of inputs subject to adversarial patch at-
tacks (the first part of the objective) to be different from
inputs used to limit the impact of the kernel on accuracy
(the second part of the objective).

The optimization problem (3) is challenging for three
reasons: first, because we are trading off two conflicting
objectives; second, because the kernel must be universal;
and third, because of the bilinear interaction between the
kernel k and adversarial patches δj . We address these chal-
lenges by alternating the design of adversarial patches with
the design of the kernel through a form of alternating min-
imization. Specifically, for each epoch (pass through the
collection of J target inputs), we first search for adversarial
patches δj , optimizing only the first part of the objective.
This is done using the standard PGD attack, but allowing
any amount of feasible noise inside the mask M . We then
fix the adversarial patches, and optimize the kernel with re-
spect to the same J inputs, now using the full objective. For
this step, we use the Adam optimizer [17] with default hy-
perparameter settings in Pytorch [25]. We repeatedly alter-
nate these two steps until the kernel and patches converge.

3.3. Ensuring Physical Realizability
Since we perform evaluations in simulation, we consid-

ered three practical challenges which arise in designing op-
tical Trojans: 1) addressing lens fabrication constraints, 2)
ensuring robustness to optical blur effect, and 3) dealing
with camera sensor noise. We address the first issue by us-
ing kernel quantization post-training, the second by train-

ing with kernel scaling, and the third by introducing a small
Gaussian noise during both training and evaluation. Figure
2 demonstrates our entire pipeline and the proxies we use to
approximate real world conditions. Next, each solution is
described in more detail.
Quantization Constraints When fabricating a filter in
practice, each weight in the kernel corresponds to a physical
aberration in the aperture filter. If we have too many such
aberrations, fabrication becomes increasingly challenging.
To deal with this, we quantize the kernel weights. This
further implies that the maximum number of weights that
we would have in each kernel is independent of the kernel
size. Hence we constrain our model to use 8-bit quantiza-
tion, which we perform after the kernel has been trained.
Kernel Scaling Moving the lens from a sensor leads to a
focus-defocus (blurring) effect. To ensure that our attacks
are successful even when objects in the scene are at differ-
ent depths, we need to ensure that our fabricated filter is
robust to different levels of defocus. We capture this effect
by ensuring that the kernel we design is robust to scaling.
Specifically, we adapted the Expectation of Transformation
(EoT) approach [1], where transformations in our case cor-
respond to kernel scaling. We considered scaling factors
η ∈ (85%, 115%) for a given kernel σ(t), with the distribu-
tion of transformations effectively uniform in this interval.
During training, we optimized the expectation of the loss
function in Equation (3) over this distribution in both gen-
erating adversarial patches and optimizing the kernel.
Gaussian Noise When an image is captured by a camera
and its accompanying sensors, we commonly observe a de-
gree of variation in color. This can be seen as a film grain
artifacts or variations in the brightness of pixels in the re-
sulting image. To capture this effect, we add a small amount
of Gaussian white noise to the convolved output image af-
ter it passes through the Trojaned lens (kernel). We train
the kernel and adversarial patches to be robust to it by again
making use of the EoT framework.
Image scaling To deal with varying object distances to
the camera sensor, we incorporate image scaling after the
image has been convolved by the lens kernel and has passed
through the aforementioned process. This aims to create
an adversarial model that is more robust to different object
sizes or object distances. We randomly scaled the image
from the uniform distribution of (100%, 115%).
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4. Experiments
We model the Trojaned lens as a depthwise convolution

kernel with a softmax layer in between the image input layer
and the image classifier model [16]. We use VGG-16 [27] as
the image classifier, unless stated otherwise. We performed
all experiments on NVIDIA RTX 2080 GPUs.

Since the Optical Trojan attack trades off attack success
with accuracy on data with no perturbations, we evaluate
it in terms of two associated metrics: Attack Success Rate
and Clean Accuracy. Attack Success Rate is the fraction of
inputs for which the targeted attack succeeds when the ad-
versarial patch is added to the input image, and the resulting
image is passed through the Trojaned lens (i.e., the kernel).
Clean Accuracy is the fraction of inputs with no adversarial
patch that are correctly classified after the image is passed
through the Trojaned lens. For both Clean Accuracy and
Attack Success Rate, higher is better.

For the results below, we use a patch size of 20x20 pixels
affixed the lower center part of the image.

Class Pair Clean Accuracy Attack Success
class 1 class 2 no kernel kernel no kernel kernel

dog cat 0.65 0.60 0.60 0.63
cat dog 0.65 0.58 0.22 0.32
cat truck 0.72 0.63 0.26 0.46

truck cat 0.72 0.70 0.28 0.35
truck dog 0.84 0.75 0.06 0.17
dog truck 0.84 0.76 0.42 0.68

Table 1. Summary of attacks on permutations over 3 classes where
dog, cat and truck represent German Shepherd, Tabby Cat and
Garbage Truck from ImageNet, respectively.

Table 1 illustrates the stealth-success tradeoff embodied
by the Optical Trojan, and offers some intuition. In this
table, and the rest of the experiments, we assume that at-
tacks have both a source class (inputs we wish to change)
and a target class. We can observe that when source and
target are semantically and visually very different (say, cat
and truck), attack is more difficult, but the Optical Trojan
is more valuable in that it has a greater impact on attack
success, compared to visually similar source-target classes.

Next, we study the effectiveness of the Optical Trojan
attack more systematically. For these studies, we randomly
select N pairs of source and target classes from the Ima-
geNet database [9], where the value of N used is specified
below for each set of experiments. For each pair of source-
target classes selected, we chose J = 50 images from Im-
ageNet corresponding to these classes to optimize Eq. (3).
While only two classes are represented in this optimization,
we evaluate loss (in training) and accuracy (in evaluation)
with respect to the full set of 1000 classes; in the supple-
ment, we also present results for accuracy measured just
with respect to the source vs. target classification (binary
accuracy), which are qualitatively similar. Throughout, we

use as a baseline the success rate of the standard adversarial
patch attack (no kernel). Note that this attack has no im-
pact on clean accuracy, since when the adversarial patch is
absent, the inputs are classified in the standard way.

4.1. Trading off Stealth and Attack Success

Figure 3. The efficacy of the attack can be controlled by modifying
the weight term ω of the loss function. By sacrificing some of
the Clean Accuracy, a stronger attack can be generated. For both
Clean Accuracy and Attack Success, higher is better. [N = 49]

Recall that the optimization parameter ω allows us to
trade off attack stealth and success rate, with stealth be-
coming more important when ω increases. We consider
the impact of the value of ω on both of these metrics, for
ω ∈ {0.25, 0.5, 0.75}.

Figure 3 shows the Trojan model performance for these
three values of ω, as we also vary the size of the kernel (Op-
tical Trojan). We can observe the expected tradeoff: smaller
values of ω result in greater drop in clean accuracy com-
pared to baseline (regular aperture), but also much higher
attack success rate. What is important to note is that for all
three values of ω, the kernel boosts attack success rate com-
pared to baseline (adversarial patches with no kernel; the
baseline clean accuracy is the accuracy of the regular VGG-
16 classifier). Moreover, it appears that for ω = 0.5 we
typically have a relatively small impact on clean accuracy,
but a considerable (nearly 10%) boost in attack success rate.

Figure 4 shows examples of learned kernels for 5 random
sets of class pairs. In addition to the trend we have observed
before with varying ω, we observe that despite having dif-
ferent random starts for each of the different ω values, the
kernels learned to share some high level features. Examples
of images after being convolved by the learned kernel are
shown in the Supplementary Material.

4.2. Varying Adversarial Patch Size
In Figure 5, we can see that, as expected, larger ad-

versarial patches make the attack easier with and without
the kernel. Moreover, larger patches allow the adversary
to boost success rate with less impact on clean accuracy.
However, such patches also become highly visible and more
suspicious, and may be infeasible. On the other hand,
the marginal benefit of a Trojan kernel for attack success
rate appears greater when the adversary is restricted to use
smaller patches.
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Figure 4. Visualization of some kernels trained with different ω
values. Note that this visualization is of the kernel pre-softmax.
The values in parentheses are Clean Accuracy and Attack Success
Rate respectively

Figure 5. We compare the strength of attacks based on the size
of the adversarial patch sizes. Note that the y-axis scales are dif-
ferent in the two graphs. The solid lines represent the respective
baselines with no kernel. [ω = 0.5, N = 49]

4.3. Impact of Semantic Distance

Figure 6. Attacks have different degrees of success based on the
how different the two classes in each pair of attack are. [N = 55]

As observed earlier, it appears that attacks are more dif-
ficult, but the kernel is more valuable, when the source and
target classes are semantically different. We now study this
more systematically. For each of the N pairs of images, we
use the ImageNet’s WordNet [11] graph representation to
compute the semantic distance between the two classes in
each pair. Specifically, this distance is the maximum num-
ber of edges of the two classes to their common neighbor.

We then bin the distances into three categories: small (1-
5), medium (6-10), and large (11-15). The resulting perfor-
mance as a function of distance is visualized in Figure 6. We
observe that while the overall attack success rates decrease
as we go from small class distances to large ones, the gap
between the baseline without the kernel and the ones with
the kernel widens and the distance increases. Moreover, in
all cases, the kernel increases the attack success rate even
for ω = 0.75, with minimal impact on clean accuracy.

4.4. Ablation Analysis
We study how different strategies like kernel/image scal-

ing and sensor noise help create a more robust attack.

Figure 7. Kernal Scaling to improve robustness to image defocus.
[N=20, ω = 0.5]

Figure 8. Noise is added to image to represent sensor noise.
[N=20, ω = 0.5]

Figure 9. Image Scaling is done to make model robust to object
distance from camera. [N=20, ω = 0.5]

Kernel Scaling Figure 7 shows the importance of kernel
scaling during training. In the case without kernel scaling,
the size of the kernel is affixed to 35 × 35 pixels, which is
why it performs very well around that value (for example,
the peak observed at the kernel size of 36). However, with-
out kernel scaling, the attack is significantly more sensitive
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to extreme ranges (high or low) of kernel scales, resulting
in weaker attacks on defocused images.
Sensor Noise Figure 8 shows the impact of adding noise
to the image after it passes through the kernel during train-
ing. Interestingly, training with noise improves clean ac-
curacy of the Optical Trojan attack, but slightly degrades
attack success rate. However, both effects are fairly minor,
suggesting that sensor noise plays a relatively minor role in
our setting.
Image Scaling An important practical consideration in
physical attacks is that we do not know precisely how the
scene gets captured. The common approach to make attacks
robust is to train with inputs with different perspectives and
scales, and we study the value of this in our case. Figure
9 shows that accounting for image scale variation (image
scaling) improves attack success rate considerably, without
compromising accuracy on clean data.

4.5. Architecture Transferability
So far, we have assumed that the attacker knows a pri-

ori the neural network that would be used for image clas-
sification in the target downstream applications. We now
study transferability of the kernels to determine the extent
to which this assumption impacts success. Specifically, to
check the transferability of learned kernels, we trained tro-
janed kernels on ResNet50 [15], and evaluated on modern
architectures like VGG16 and Inception (v3) [28].

Figure 10. Transferablity is achieved by training kernels on one
architecture and evaluating them on others. [N = 20, ω = 0.5]

In Figure 10, we observe that kernels learned on one
neural network architecture are indeed quite transferable
to other architectures, demonstrating that we can success-
fully train Optical Trojan kernels without having an inti-
mate knowledge of the deep neural network subsequently
used for the task, using a proxy network instead.

However, since we do observe some degradation if the
target architecture does not match the one used to train
the kernel, we next explore the efficacy of ensemble ker-
nel training to further boost attack efficacy. To this end, we
trained kernels using an ensemble of ResNet18 and Incep-
tionV3 with the goal of further increasing the attack success
rate. Note that we chose ResNet18 instead of ResNet50, so
that both InceptionV3 and ResNet18 can be accommodated
on a single RTX 2080 GPU with 8GB of RAM.

Figure 11. Ensemble does demonstrate a small increase in attack
success rate as compared to transferable training. [N = 20, ω =
0.5]

In Figure 11, we observe that kernels learned on an en-
semble of models improve overall attack success rate by
6.47% as compared to models trained only on ResNet50.

5. Defending against Optical Trojans
Although the use of trojaned apertures can significantly

increase the risk of adversarial attacks, these apertures are
also markedly different from standard apertures, as we
quantitatively show with a simple method based on L2
distances between trojaned and standard aperture kernels.
Therefore, this security risk can be mitigated by including
an inspection process before third party lenses are included
in autonomous systems. To this end, we propose a simple
and highly effective, Optical Trojan detector. The goal of
this detector is to classify a given kernel as benign, or tro-
janed. We define benign kernels to be a set of polygonal
or disc shaped kernels, representing apertures of clean cam-
eras [33, 24]. It has been shown that the kernel of a camera
can be extracted using a calibrated image [23]. We assume
that the user will be able to do the same to acquire the ker-
nel of a given camera. In order to account for variations in
the benign kernel, we choose several shapes of apertures in
the form of polygons with sides N=3 to N=8, and disc ker-
nels. To account for different scales of defocus and oriented
apertures we perform transformations including random ro-
tations and scaling of the benign kernels. It is important to
note that applying these transformations also helps account
for manufacturing defects in the camera supply chain.

For the trojaned kernels, we use a set of learned kernels
whose attack success rates were shown in Section 4. As
observed in Figure 4, the learned trojaned kernels typically
do not follow the Gaussian distribution. We leverage this
observation to design a detector that checks the difference
between the original kernel and its Gaussian approximation.
We then show that the distribution of this difference for be-
nign and Optical Trojan kernels can be cleanly separated by
a single threshold.

Specifically, since the Gaussian distribution in 2D (im-
age space) can be defined by its center and its standard de-
viation, we set its origin as the center of mass of the given
kernel, and its variance as the variance of the kernel about
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Figure 12. Distribution of the L2 Norms between the benign and
trojaned kernels and their respective gaussian approximations. A
clear distinguishing threshold is able to differentiate between the
two. Note that the y-axis uses a log scale due to a very small
variance in benign norms, and a large variance in trojaned norms.

its center of mass. Additionally, like before, we ensure that
the Gaussian approximated kernel also sums to 1. We use
the L2 norm to compute the distance between the Gaussian
approximation and the original kernel. In doing this, we hy-
pothesize that benign kernels will be more similar to their
Gaussian approximations than trojan kernels to theirs. The
L2 norms of the benign and trojaned kernels is shown in
Figure 12, and the figure confirms our hypothesis: indeed,
the two distributions appear to be completely separable by
a single threshold. We calculate the threshold γ for a kernel
k using equation 4, where i ∈ N , with N the set of benign
kernels. W is the width of the kernel. We normalize by
the width so that the size of the kernel does not affect the
distribution.

γ =
1

2W
(max

i,N
||ki,benign − ki,benign,gauss||

−min
i,N

||ki,trojan − ki,trojan,gauss||)
(4)

Now, to detect if a given camera is trojaned, we first ac-
quire its kernel, find its Gaussian approximation, and calcu-
late the L2 norm between the two. If the norm is less than
the threshold, we deem the camera to be benign, whereas if
the norm is greater than a threshold γ, the given camera has
been trojaned. Equation 5 shows this succinctly.

kernel =

{
benign, if ||k − kgauss||/W ≤ γ

trojan, otherwise
(5)

The advantage of using a detector like this is that it does
not require pairs of clean images and images that have been
captured by trojaned camera. We directly check a given ker-
nel against a threshold that captures the distributions of the
benign and trojaned kernels. With this method, we achieve
100% accuracy across the dataset.

6. Discussion
We demonstrated that one can significantly boost the im-

pact of adversarial patch attacks on deep neural networks
without compromising accuracy on clean data by embed-
ding a Trojan as an adversarial aperture filter inside the cam-
era lens. Moreover, we showed that the resulting Optical
Trojan is robust to variations in the neural network architec-
ture. While we designed and evaluated the Optical Trojan
in simulation, it has been previously demonstrated that such
aperture filters can be successfully implemented in standard
DSLR cameras [19]. Our primary message is: secure your
lenses, especially in safety critical computer vision applica-
tions like self-driving vehicles. The means to improve se-
curity can vary, such as buying them from trusted sources,
ensuring that molds used for manufacturing have not been
tampered with, or visual inspection of the lens. Here, we
study yet another idea: automated detection of Optical Tro-
jans, i.e., without human intervention. Since Trojans are
necessarily fixed and universal, we showed that there is a
relatively simple approach for detecting these by first ex-
tracting the aperture filter kernel by taking a photograph of
a calibrated image, and then measuring whether the kernel
is well-approximated by a Guassian. We then demonstrated
that this simple procedure enables near-perfect detection of
Trojaned lenses. This detection step can thus be used as a
routine part of camera quality control, in addition to manual
inspection for securing the camera supply chain.

7. Ethics/Societal Impact Statement
Security papers such as ours that present novel vulnera-

bilities naturally invite a concern about the ethics of doing
so. However, the primary goal of our work is to antici-
pate serious concerns in perceptual architectures based on
deep neural networks before these are widely deployed in
mission-critical and high stakes applications, such as au-
tonomous driving. We can only address these vulnerabili-
ties once we understand them, and consequently, exposing
them is the necessary first step. In the discussion above,
we present several ideas for addressing the Optical Trojan
vulnerability, including (a) modified forms of adversarial
training, (b) quality control approaches that detect optical
Trojans based on digital images taken by the camera.

8. Conclusion
We showed that we can increase the efficacy of adversar-

ial patch attacks by modifying the lens of a camera. We rep-
resented the coded aperture that serves as the Trojan with a
depthwise convolution kernel placed in between the image
input and the classification model. We trained this model
to be robust to fabrication capability (via quantization), im-
age defocus (via kernel scaling), sensor noise (via Gaussian
noise) and image depth (via image scaling). Finally, we
proposed a defense strategy to identify malicious lenses.
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