
Impact of Colour on Robustness of Deep Neural Networks

Kanjar De1.2
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Abstract

Convolutional neural networks have become the most
widely used tool for computer vision applications like image
classification, segmentation, object localization, etc. Re-
cent studies have shown that the quality of images has a
significant impact on the performance of these deep neu-
ral networks. The accuracy of the computer vision tasks
gets significantly influenced by the image quality due to the
shift in the distribution of the images on which the networks
are trained on. Although, the effects of perturbations like
image noise, image blur, image contrast, compression arti-
facts, etc. on the performance of deep neural networks on
image classification have been studied, the effects of colour
and quality of colour in digital images have been a mostly
unexplored direction. One of the biggest challenges is that
there is no particular dataset dedicated to colour distor-
tions and colour aspects of images in image classification.
The main aim of this paper is to study the impact of colour
distortions on the performance of image classification using
deep neural networks. Experiments performed using mul-
tiple state-of–of-the–the-art deep convolutional neural ar-
chitectures on a proposed colour distorted dataset are pre-
sented and the impact of colour on image classification task
is demonstrated.

1. Introduction
Over the years, deep convolutional neural networks

have become indispensable for computer vision applica-
tions achieving human vision level performance. Currently,
the state-of-the-art tool for researchers for image classifica-
tion is the deep convolutional neural networks, where fea-
ture extraction and classification are combined and these
networks are trained in an end-to-end manner. With the
gaining popularity and deployment of trained computer vi-
sion models in day-to-day life and applications where safety
is critical, robustness is one of the most important con-
siderations for developing such a system. Multiple direc-
tions of research are undertaken to improve the performance

and robustness of models. Some researchers work towards
proposing new and robust architectures and others work on
improving the scaling and training strategies to improve the
performance and robustness of deep neural networks.

Krizhevsky et al. [33] proposed one of the first deep neu-
ral networks (AlexNet) for the Imagenet [9] competition
2012 and AlexNet outperformed the traditional techniques
which involved a combination of hand-crafted features and
classifiers. After the success of AlexNet, the following year,
Zeiler and Fergus introduced the ZFNet [52] which showed
the best performance in the Imagenet challenge in 2013.
Lots of advancements and innovations in deep neural net-
work architectures have made them achieve higher accuracy
in image classification tasks. VGG-16 [43] proposed by Si-
monyan et al. and GoogleNet [44] proposed by Szegedy
et al. were the top performers at Imagenet challenge 2014.
This architecture introduced the concept of inception mod-
ules and 1 × 1 convolutions. The next architectural im-
provement in deep convolutional networks was the intro-
duction of residual blocks in the Resnet architecture [20]
and was the best performer in the Imagenet Challenge 2015.

Currently, researchers are actively exploring the effects
of the quality of images on the performance of deep neu-
ral networks [10, 31, 11, 17, 3, 39, 54, 14]. However, the
existing robustness bench-marking datasets do not have ad-
equate colour-related distortions and this is one of the main
motivations for our work. The original images mentioned in
Imagenet-C have been used for our study and colour related
subsets of these images have been generated for our anal-
ysis. To the best of our knowledge, very few studies have
been conducted on the impact of quality of colour in images
and the performance of deep neural networks on tasks like
image classification. To enable further research on the im-
pact of colour of digital images in deep neural networks, we
propose a dataset of images having different colour trans-
formations and colour distortions generated synthetically
from a subset of the Imagenet Challenge dataset, which are
available from Imagenet-C. Faults in colour imaging sen-
sors, colour filters in data acquisition devices, gamut or
post-processing filters are some natural sources where the
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colour of objects can be altered and thus the distribution of
the images can be altered. For example, two images of the
same scene with different colour gamuts will have differ-
ent underlying distribution, and thus the distribution shift
will have an impact on the performance of the trained deep
learning model.

Colour information has been exploited in different com-
puter vision tasks like image segmentation and object de-
tection. The human vision system has a mechanism of per-
ceiving and processing colour, but to the best of our knowl-
edge, very little is known about how deep neural networks
perceive colour. Although deep neural networks have been
used for colourizing gray-scale images [53, 19, 36] still they
have their own challenges. Recent work by Kantipudi et
al. [30] has highlighted colour channel perturbation attacks
on VGG, Resnet, and Densenet architectures and demon-
strated the threat posed by colour information on the per-
formance of convolutional neural networks. The current ro-
bustness benchmarking datasets like Imagenet-C, have tack-
led out-of distribution cases related to noise, blur, weather,
cartoons, sketches, etc. Hendrycks et al. [24] have pro-
posed two challenging datasets, Imagenet-A and Imagenet-
O , which contain real-world unmodified natural adversar-
ial examples where most of the deep neural networks fail.
Imagenet-R [21] (Imagenet-Rendition) is a recent database
containing art, cartoons, graffiti, sketches, etc. of Ima-
genet classes to create more out of distribution samples.
To the best of our knowledge, there is no dataset dedicated
to colour information and colour distortions to understand
the behavior of deep neural networks. The main contribu-
tions of this paper include the creation of a dataset related
to colour distortions and colour modifications to understand
their impact on the task of image classification and then
analyse the performance of state-of-the-art deep network ar-
chitectures on image classification task of the dataset under
different colour distortions and modifications based on the
classification accuracy. The chosen deep convolutional net-
work architectures have been few of the top performers in
the Imagenet database and thus it is fair to further explore
the response of these architectures using the weights pre-
trained on the Imagenet database. The rest of the paper is
organized as follows: Section 2 presents background infor-
mation related to the existing literature, followed by Sec-
tion 3 which provides details of the experiments conducted,
followed by the results and findings in Section 4 and finally
the conclusion and future directions are given in Section 5.

2. Background
The influence of the quality of images on the perfor-

mance of deep neural networks has been investigated in the
literature, and we give a brief overview of relevant existing
research. The general hypothesis is that the images with
distortions have a different distribution than the images on

which the models are trained on. The shift in distribution
reduces the performance of the deep learning models for
distorted images. Dodge and Karam [10] checked the per-
formance of four state-of-the-art deep neural network mod-
els (Caffe reference model [29], VGG-CNN-S [8], VGG16
[43], and GoogleNet [44]) for image classification under
five types of quality distortions, namely blur, noise, con-
trast, JPEG, and JPEG2000 compression. Their test was on
a subset of the validation set of the ImageNet 2012 [41].
The results indicate that the deep neural networks are influ-
enced by distortions, especially noise and blur. Dodge and
Karam [11] further investigated the performance of deep
neural networks compared to humans on distorted images,
and they found that the performance of the deep networks
are lower on distorted images than humans, although they
perform similar on high quality images.

Borkar and Karam [3] noticed that even small distor-
tions could have an impact on image classification. They
focused on Gaussian blur and additive noise, and proposed
a ”correction” for deep neural networks to increase the per-
formance in classification for distorted images. Ghosh et
al. [14] also showed that Gaussian noise, blur, JPEG and
JPEG2000 compression lowered the accuracy of deep neu-
ral network for image classification. They also investigated
combined degradation, and found the same result. The au-
thors also proposed a master-slave architecture to improve
the performance. Zhou et al. [54] showed that the per-
formance of deep neural networks was poorer when mo-
tion blur, defocus blur, Gaussian noise or all three distor-
tions combined were added to images. They also showed
that fine-tuning and re-training would improve the perfor-
mance. Roy et al. [39] analyzed the performance of six dif-
ferent deep neural network architectures when influenced
by Gaussian white noise, coloured Gaussian noise, salt &
pepper noise, motion blur, Gaussian blur, and JPEG com-
pression. The different architectures were influenced by the
distortions, but at different degrees.

Impact of Colour Despite the work carried out to in-
vestigate the impact of image quality on deep neural net-
works, there is little work carried out on colour related dis-
tortions. Engilberge et al. [12] were first explore colour
representation in deep neural networks where the authors
discussed about colour sensitive units and hue specificity of
the VGG-19 and Alexnet architecture. Gowda et al. [16]
conducted a study of the Densenet architecture on different
colour spaces and the accuracy of the deep neural network
architecture on image classification datasets. Buhrmester et
al. [6] have conducted deep experiments on the impact of
colour and image quality on image classification tasks. The
authors have run experiments on their own Person Finder
dataset and publicly available Cifar-10 and Cifar-100 [32]
datasets to understand the impact of colour on the task of
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image classification. The authors concluded that certain
classes like wild animals (deer, fox, rabbit, beaver) and
landscape and desert are highly dependent on colour infor-
mation. These results give us the motivation to further ex-
plore the impact of colour and colour related distortions on
image classification. Based on the work from Hendrycks et
al. [22] we have also used the validation set of the Ima-
genet database as our base database and augmented differ-
ent colour distorted images from these images. The details
of the dataset generation are explained in Section 3.1.

Architectures The evolution of deep learning started with
Alexnet. It combines convolutional layers, pooling layers,
and activation functions. It was earlier the top performer on
the Imagenet database. One of the significant architectures
was VGG-19 which is a deep architecture with 47 layers,
out of which 16 are convolutional and 3 are fully connected
layers. An important characteristic of the VGG architecture
is the use of three stacked single stride 3 × 3 convolutional
layers which have the same receptive field as 7 × 7 convo-
lutional layer. One of the biggest challenges in making the
network deeper was that during the training phase the gradi-
ents would become smaller and smaller and lead to vanish-
ing gradients. To tackle the vanishing gradient problem, one
of the important innovations was the Resnet architecture
which is still one of the widely used backbones in computer
vision tasks. The Resnet architecture, which introduces the
concept of skip connections which are used to fit the pre-
vious layer input to the next layer without modifying the
output and enabling to have a deeper network (Res152 vari-
ant has 152 layers). This architecture uses residual block
units where an individual block has two 3 × 3 convolu-
tional blocks and these residual blocks are stacked. During
the learning phase, the gradients can now flow into the pre-
vious layers via the skip connections, thus countering the
vanishing gradient problem. One of the key innovations in
CNN architectures is the inception module which computes
1×1, 3×3 and 5×5 convolutions within the same module
of the network which helps in covering a larger area and
at the same time preserving fine resolution for small infor-
mation in the images. This module was the building block
of the Googlenet architecture. Another significant archi-
tecture is the Densenet, which is based on connecting every
layer directly with each other in a feed-forward manner, and
needs fewer parameters in comparison to traditional convo-
lutional neural networks by mitigating the need to learn re-
dundant feature maps and ensuring maximum information
flow. One of the drawbacks of deep convolutional networks
is that they are computationally intensive and the models
require a lot of memory which makes them unsuitable for
mobile devices. For deployment in such devices a group of
networks known as Mobilenets [42, 26] were proposed. Us-
ing the concepts of depth wise separable convolutions and

inverted residuals, these networks give competitive perfor-
mance for computer vision tasks in mobile devices.

Robustness Papernot [37] et al. have highlighted some
limitations of deep learning in adversarial settings. Evaluat-
ing robustness is an extremely challenging and ongoing area
of research. Carlini [7] have given some directions in this
regard. Hendrycks et al. [22] attempted to benchmark deep
neural network robustness to common corruptions and per-
turbations like additive noise, blur, compression artifacts,
weather conditions, contrast, etc. They proposed a vari-
ant of Imagenet referred to as Imagenet-C and Imagenet-P.
Imagenet-C contains 15 types of algorithmically generated
corruptions with different levels of sensitivity. Recently, li-
braries like Foolbox [38] have been developed for generat-
ing adversarial examples for bench-marking machine learn-
ing examples. Studies have indicated that Imagenet-trained
convolutional neural networks are biased towards texture
and to improve robustness and accuracy, shape bias must
be increased [13], but the impact of colour in images is not
deeply studied. Robustness of deep neural networks has be-
come an exceedingly important topic for the research com-
munity as studies have shown that convolutional neural net-
works can be deceived by visual illusions [15] and have gar-
nered interest recently, like Yin et al. [51] who introduced
a Fourier perspective on model robustness in computer vi-
sion. Taori et al, [47] conducted extensive experimentation
to study the robustness of deep learning models on naturally
occuring distribution shifts and concluded that synthetic in-
terventions like diverse data augmentations offer robustness
but more examples of data on naturally occurring distribu-
tion shifts improves robustness. Augmix [23] is a simple
data processing technique which was proposed to improve
the robustness of the deep learning model. Augmix con-
sists of simple augmentation techniques like rotate, trans-
late, posterize, etc. in combination with Jenson-Shannon
divergence loss to enforce a common embedding for the
classifier. Augmix does not use any form of colour or con-
trast augmentation to avoid manifold intrusion as previous
studies from Guo [18] et al. have suggested that augmen-
tation like histogram colour swapping can cause changes in
class labels which lead to manifold intrusion.

Recent Advances Recent advances in deep learning in-
clude not only improvements in model architectures but
also advances made in the ways the models are trained,
data augmentation techniques, hyperparameter optimiza-
tion. Recently, Bello et al. [2] showed that changing train-
ing and scaling strategies greatly improved Resnets. Gener-
ally, CNNs are designed in such a way to optimize the re-
sources. Scaling up improves the model accuracy, but more
resources are required. Tan and Le [45] conducted a de-
tailed study on model scaling in network depth, width, and
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resolution to develop models with better performance and
developed a family of models known as EfficientNets(B0-
B7). The EfficientNet models were inspired from the Mo-
bileNet models and used the inverted residual blocks (also
known as MBconv) in their design. Tan and Le demon-
strated the effects of network depth, width, and resolution
scaling individually and finally proposed a compound scal-
ing mechanism for the designing of EfficientNet [45]. The
family of Efficient models B0-B7 (B0 is the mobile size
baseline and B7 has the highest resolution) performs com-
petitively on the Imagenet dataset and the performance im-
proves when the scale of the model and number of pa-
rameters increases. As a solution to certain challenges,
smaller models with faster training were proposed by Tan
and Le and this family of CNN models are called Efficient-
NetV2 [46]. Neural Architecture Search [34] (NAS) is used
by researchers in machine learning to design and learn the
network topology to achieve the best performance on a cur-
rent task. Tan and Le combined the technique of training
aware NAS and scaling to optimize parameter efficiency
and training speed for EfficientNetV2 models. New oper-
ations like Fused-MBConv were used to search the mod-
els in the search space and an improved learning method
which adaptively adjusted regularization along with image
size known as progressive learning. One of the models
which has shown robust performance on Imagenet-C is an
approach based on knowledge distillation. Noisy student
training [50] is a semi-supervised learning approach which
uses the concepts of self-training and knowledge distilla-
tion using equal-or-larger student models and noise added
to the student during the learning phase. It involves training
a teacher model on labeled images and subsequently using
the teacher to generate pseudo labels on unlabeled images
and finally training a student model on the combination of
labeled and pseudo-labeled images. The extra overhead in
noisy student training is that in addition to Imagenet some
extra unlabeled images are used for developing the model.
Another approach developed to increase robustness is ad-
versarial training using Adversarial prop [49]. This training
procedure generates adversarial examples and treats them
as additional examples and the main contribution is the use
of a separate auxiliary batch norm for adversarial examples
as the hypothesis is that the adversarial examples have a dif-
ferent underlying distribution than the normal samples.

Normalizer Free Networks The concept of batch nor-
malization [28] has offered researchers certain advantages
like efficient large-batch training, regularization effect elim-
inating the mean shift etc. Recent studies using signal prop-
agation plots from Brock et al. [4] have identified certain is-
sues of batch norm like the input is downscaled by a certain
factor which is proportional to the standard deviation of the
input and the variance of the signal is increased by the resid-

ual block by a certain factor and proposed a series normal-
izer free resnets. Brock et al.[5] then extended this concept
to propose a family of normalizer free networks known as
NF-Nets. The authors of NF-nets have modified the resid-
ual blocks and used convolutions with scaled weight stan-
dardization. For the training of NF-Nets, adaptive gradient
clipping was used to restrict the magnitude of gradients to
prevent exploding gradients and unstable training.

3. Experiments and Methodology

In this section, we discuss the details of the dataset gen-
eration for the experimental study and the deep neural net-
work architectures used in our work. The biggest compe-
tition in image classification is the Imagenet Challenge 1

which published one of the most comprehensive image clas-
sification databases with 1000 categories is used for evalu-
ating the performance of the image classification models.
Convolutional neural network architectures are built up by
a combination of stacking up different layers like convo-
lutional layers, pooling layers, fully connected layers etc.
The input to the convolutional neural network architecture
is a 3-channel colour image with raw image pixel values.
Generally, colour images are represented in a 3-dimensional
array of in the format M ×N × 3 where M and N are the
number of rows and columns in the image and 3 are the
number of channels. All colour spaces represent the im-
ages in this format. The RGB colour space has 3 chan-
nels containing red, green, and blue colour information.
The CIELAB colour space represents colour information in
three channels, namely L which contains lightness informa-
tion from black to white, channel a which information from
green to red and channel b which contains information from
blue to yellow. The next colour space used in this study is
the YCbCr colour space which also contains three channels
where the Y channel is the luminance component and Cb
and Cr channels are the blue-difference and red-difference
chroma components.

3.1. Dataset Generation

Generally, the deep neural networks are trained on the
comprehensive dataset designed for the Imagenet chal-
lenge containing 1000 classes and these models use all
standard three Red-Green-Blue colour channels during the
training phase. The proposed Imagenet-COLORDISTORT
(Imagenet-CD) dataset is derived from the Imagenet
dataset. 50 images from each of the 1000 classes are avail-
able as the validation set, out of which the images without
colour channels are removed by setting the corresponding
channel values to zero for our analysis, thus leaving a set of
49101 images varying from 35 to 50 images belonging to
each of the classes.

1http://image-net.org/
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RGB channel based distortions In the proposed dataset,
to study the effect of RGB colour channels on image classi-
fication, six subsets were created by removing one or two
colour channels, thus generating six colour casts: Cyan,
Magenta, Yellow, Red, Blue and Green respectively as
shown in Figure 1. These transformations were performed
to study the impact of colour casts and the impact of in-
dividual colour channels without changing the scene and
spatial information, and to analyse the behaviour of deep
neural networks on these casts and understand the influence
of colour channels on the classification accuracy of these
modern deep convolutional neural network architectures.

Colour space based distortions In colour image process-
ing, the colour of a digital image is represented using differ-
ent mathematical models in the form of colour spaces. Hue-
Saturation-Value (HSV) space [1], CIELAB space [25], and
YCbCr are some of the most popular colour spaces. For de-
tailed investigation, we have removed some of the colour
channels in these colour spaces to generate different sub-
sets of images. To study the colour aspects of images, only
colour channels are modified to create the dataset and the
intensity channels like Value in HSV space, L in CIELAB
space, and Y in YCbCr space are not modified. The removal
of saturation in the HSV colour space, by setting it to zero,
results in loss of colour and the image becomes grayscale,
but keeping the spatial information constant. Removing the
hue component by setting the values of hue channel to 0
of the image results in moving the image components to-
wards a reddish tinge. For experimental analysis, two sep-
arate subsets have been created from the CIELAB colour
space, where the a and b channels have been set to zero in
each of the respective subsets. Another popular colourspace
is YCbCr, where Y denotes the luma component and Cb and
Cr denote the blue-difference and red-difference chroma
components, respectively. Two subsets of distorted images
are augmented by removing the information from the Cb
and Cr channels, thus resulting in images with yellow and
cyan tinges. Examples of these distorted variants are shown
in Figure 1.

Other distortions For transmission in limited bandwidth,
images often need to be compressed or the number of
colours in the image are reduced using colour quantization.
In the proposed Imagenet-CD dataset, a subset of images
were created where the number of colours in the image was
reduced to 64 by using K-means clustering. In digital pho-
tography and displays, a colour gamut is a complete subset
of colours which can be represented by the display device.
To study the effect of colour gamut on image classification a
subset of images was created using a smaller gamut (news-

(a) Cyan (b) Magenta (c) Yellow

(d) Red (e) Green (f) Blue

(g) Hue (h) Cb (i) A-Channel

(j) Saturation (k) Cr (l) B-Channel

(m) Small gamut (n) Chroma noise (o) Quantization

Figure 1: Example of images from the Imagenet-CD dataset

paper gamut-SNAP 2007 profile) 2 using an ICC profile. In
addition, we have a subset of images where additive Gaus-
sian noise is added in the Cb and Cr channels of the YCbCr
colour space.

4. Results and Discussion
In this section, we present the experimental results. The

pretrained models from Torchvision 0.2.0 and the Pytorch
Image Models packages [48] are used for the experiments.

4.1. Impact on widely used CNN architectures

In this section, we present the accuracy of the architec-
tures mentioned in Table 1 on the generated Imagenet-CD
dataset. To establish a reference, the first column (Origi-
nal) represents the classification accuracy of the images in
the absence of any perturbation. The Densenet and Resnet

2www.color.org
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architectures show similar classification accuracy, and they
perform better in comparison to the VGG-19 and Googlenet
architectures. Even MobilenetV2 architecture has shown
similar trends like the other heavier architectures, although
the performance is on the poorer side. There is a significant
loss in accuracy when one of RGB channels is removed (set
to 0) from the images as shown in Table 1. One interesting
observation is that in the case of blue colour cast generated
by setting red and green channels to 0 has a very signifi-
cant impact on the classification accuracy of the neural net-
work architectures and Imagenet pretrained models perform
very badly and specially the Alexnet architecture shows the
worst classification performance and is not able to perform
classification in the colour distorted dataset. One of the rea-
sons for the poor accuracy of the images with blue cast is
that most of the images were classified in underwater object
categories like jellyfish etc or low light night scenes. This
behavior was observed across all five architectures.

From Table 1 it can be inferred that colour channels from
different colour models have different impact on the classi-
fication accuracy of the dataset. By removing the saturation
channel (setting it to zero) from the HSV colour space, we
remove the colour information and there is a decrease in the
performance of the deep neural network based classifiers.
This observation is consistent throughout all architectures.
Removing the hue channel (setting it to zero) of the image
essentially moves the objects in the image towards a red-
dish tinge, and since the deep neural network architectures
are heavily inspired from the human visual system hence it
is observed that the classifier performs misclassification and
tends to favour the classes which have a reddish tinge like
meat market, pomegranate, red wine etc. Similar behaviour
is observed when the a and b colour channel information are
removed (set to 0) in the CIELAB colour space. For com-
pression related distortions like colour quantization, where
the number of colours in all images are restricted to 64, a
drop in classification accuracy is observed. Another inter-
esting insight is that a smaller colour gamut has an impact
on the way the deep neural networks perceive the image and
results in a drop of accuracy due to the shift in distribution
of the image. Presence of additive colour noise also reduces
the performance of the classifiers.

4.2. Recent advances in efficient and robust models

In this Section, we demonstrate the Top-1 classification
accuracy performance in more recent networks like Effi-
cientNet and EfficientNet V2, training strategies like Adver-
sarial propagation, noisy student (tested on Efficientnets v1)
and augmentation strategies like Augmix (tested on Resnet-
50). These networks and strategies have shown promising
results on existing benchmarks like Imagenet-C.

4.2.1 Augmix and Resnet-RS-50

Here we present the impact of Augmix [23] data process-
ing technique on the overall classification performance on
Imagenet-CD dataset. We compare the performance of a
pretrained Resnet-50 model against a pretrained Resnet-
50 model with Augmix 3 and the comparison is shown in
Fig. 2. Although for single channel information like blue
channel, the performance is still poor but the model perfor-
mance improves in comparison with the model trained with-
out Augmix. Recent studies from Bello et al. [2] have sug-
gested that efficient training and scaling of existing Resnet
architectures can improve the model performance and de-
veloped a group of models known as Resnet-RS. We present
that the classification performance of Resnet-RS-50 model
on the colour distorted images from Imagenet-CD database
and Top-1 accuracy for each group is tabulated in Fig. 2.
We see a significant increase in robustness in comparison
to the standard Resnet-50 model and the Resnet-50 trained
with Augmix.

4.2.2 Scaling CNN, Adversarial Prop and Noisy Stu-
dent training

Efficient Nets are based on compound scaling proposed by
Tan and Le [45]. We tested the Imagenet-CD dataset on
the EfficientNet models with different scales from the base-
line B0 up to B7. The general observation from Table 2 is
that the models perform better when they are scaled up and
become increasingly robust when they are scaled up. The
behavior of the baseline B0 model is slightly better in com-
parison to MobilenetV2 model shown in Table 1.The perfor-
mance boost in the high resolution B7 model comes at the
cost of it being a heavy model with a lot of parameters. The
EfficientNetv2 is available in three different configurations-
small (S), medium (M), and large (L) is also tested on the
Imagenet-CD dataset and the results are presented in Ta-
ble 2. These give competitive performance to high reso-
lution models of EfficientNetv1 with considerably lighter
models. An important observation is that Efficientnet mod-
els trained with adversarial propagation [49] and noisy stu-
dent training [50] performed better on the distorted images
in comparison with the normal EfficientNet models with the
noisy student trained models showing the best performance
almost across all resolutions.

4.2.3 Normalizer Free networks

Normalizer Free Resnets and Normalizer Free Networks
(NF-Nets) have been recently proposed. These models do
not use Batch normalization. In Fig. 3 we have compared
the pretrained NF-Res-50 model with the standard Res-50
model and observed that there is a significant increase in

3pretrained weight from website of the author
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Table 1: Classification Top-1 accuracy (%) of well-known CNN architectures on the Imagenet-CD dataset
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Densenet [27] 77.1 73.4 75.7 75.3 60.7 49.1 68.6 41.9 18.6 48.6 65.7 66.1 71.0 68.6 64.2 45.5
Resnet [20] 78.3 71.6 76.8 76.5 60.6 48.6 67.0 43.3 18.6 44.4 67.6 67.4 72.0 69.8 57.9 39.4
VGG19 [43] 72.4 63.2 70.1 70.2 47.5 25.2 56.2 27.2 9.6 32.5 59.7 57.3 65.5 63.6 48.2 35.2
GoogleNet [44] 69.8 65.7 68.6 68.5 52.6 52.5 60.3 44.7 22.6 51.6 65.7 58.9 67.8 65.8 57.3 41.6
MobileNet [42] 71.9 62.2 69.6 69.3 49.0 33.2 55.6 28.6 9.9 32.8 59.5 56.4 64.6 61.9 40.2 25.7
Alexnet [33] 56.7 38.4 54.6 54.7 12.8 4.2 23.3 4.4 0.9 4.6 35.6 32.6 44.3 41.5 11.8 4.15

Figure 2: Performance of Res-50 vs. Res-50 + Augmix vs. Res-
RS-50

Figure 3: Performance of Res-50 vs. NF-RS-50 models

Top-1 accuracy for distorted images in comparison to the
standard Res-50 model. In Table 2 we have also shown
the performance of pretrained NF-Net models on Imagenet-
CD images for different resolutions (from baseline F0 to
F5) and a similar trend to EfficientNet is observed where
the higher resolution images give better accuracy. Even the
baseline F0 model performs better than all competitive ar-
chitectures and is more robust to distortions.

5. Conclusion and Future Work
With deep neural networks being deployed in commer-

cial and safety critical systems, one of the main focus of fu-
ture research is to make these models more robust and accu-
rate to changes. Experimental studies conducted in this pa-

per have yielded some interesting results with respect to the
impact of colour information of images on the performance
of deep neural network architectures due to the shift in dis-
tribution. The performance of these networks drastically re-
duces when information from one or two colour channels in
the RGB colour space is removed. Modifications in the hue
and saturation components of an image have a strong im-
pact on the internal working mechanism of the deep neural
network and this trend is observed across all different colour
spaces included in this study like the CIELAB and YCbCr
colour spaces. In this paper, we have presented the over-
all classification behavior of the widely used convolutional
neural network architectures under different colour distor-
tions and the interesting results demonstrated will serve as
a motivation to investigate the colour sensitivity of individ-
ual architectures in detail in the future. The analysis tab-
ulated in this paper will motivate researchers to take into
consideration the impact of colour channels and aspects of
digital colour images and different colour spaces for propos-
ing more accurate and robust systems based on deep convo-
lutional neural networks. The important observations are
listed as

• There is a significant impact of colour information on
the inference of deep neural networks.

• Data processing techniques like Augmix have some
impact on robustness and optimizing the training pro-
cedure, diverse augmentations and optimizing hyper
parameters increases the robustness as Resnet RS-50
is much more robust compared to Resnet-50 models.

• Higher resolution models are much more robust as the
same trend is observed in both EfficientNets (B7 has
much higher accuracy than B0, V2L performs better
than V2S) and NF-Nets.

• Training procedures like adversarial prop and noisy
student training offer some amount of additional ro-
bustness to models.

• The Normalizer free models offer more robustness to
colour specific distortions.
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Table 2: Classification Top-1 accuracy (%) of Imagenet-CD for Efficient Net and Normalizer free network models
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B0 [45] 76.8 70.6 75.2 74.2 63.3 51.1 68.7 40.6 18.0 51.3 66.5 66.5 70.6 68.3 62.4 45.3
B0 + ap [49] 77 72.9 76.3 76 64.1 55.7 70 42.1 28.8 54.1 69.2 67.9 72.4 70.6 64.7 50.7
B0 + ns [50] 78.6 73.5 77.4 76.3 65.3 57.6 68.9 45.6 31.2 52.1 68.2 67.1 71.9 69.3 59.4 47.6
B1 [45] 78.8 74.1 77.5 76.9 68.7 58.5 71.8 47.6 23.1 59.1 70.1 69.7 74 72 65.6 54.8
B1 + ap [49] 79.2 75.6 78.4 78.1 69.7 52.8 72.5 47.7 25.5 59.2 71.6 71.3 75.1 73.3 67.9 58.6
B1 + ns [50] 81.4 77 79.8 79.1 70.4 65.1 73.9 54.5 38.1 60.3 72.2 71.1 75.7 74.1 66.6 60
B2 [45] 80 75.1 78.5 77.7 70 60.5 73.7 50.5 28.3 59.9 71 71.1 75.1 73 67.9 56.8
B2 + ap [49] 80.2 76.4 79.3 78.9 71.4 63.5 75.2 53.2 31.9 61.6 73.4 73.1 76.4 75 71.7 60
B2 + ns [50] 82.4 78.3 80.8 80.3 72.6 65.7 75.9 57.3 41.7 62.9 73.4 73 77.3 75.2 68.7 62
B3 [45] 81.6 77.2 80.1 79.5 73.4 65.9 76.4 60.3 33 66.7 74.4 73.9 77.2 75.2 72.7 66.1
B3 + ap [49] 81.8 78.5 80.9 80.8 74.9 64.6 77.3 60 38.8 66.2 76.5 75.9 78.9 77.8 74.5 67.9
B3 + ns [50] 84 80.4 82.8 82.1 76.2 70.3 78.3 61.6 47.6 67.1 76.2 75.6 79.5 77.9 72.6 69.9
B4 [45] 83 79 81.1 80.7 75.1 70.2 78.4 62.3 41.5 68.6 76.1 76.1 78.9 77.3 75.8 69.1
B4 + ap [49] 83.2 80.5 82.3 82.1 77.9 73.3 80 65.7 48.6 71.8 78.4 78.3 80.7 79.4 78.1 72.3
B4 + ns [50] 85.1 81.5 83.4 82.6 77.7 75.9 79.8 68.9 58 72.8 78.2 78.3 80.9 79.7 77 73.9
B5 [45] 83.7 78.9 81.6 81.7 77.1 74.4 80.4 68.6 54.8 74.3 77.8 77.4 80 78.6 78.6 71.1
B5 + ap [49] 84.2 81.6 83.5 83.1 79 75.4 80.9 67.3 47.4 73 79.9 80 81.9 81 78.7 74.4
B5 + ns [50] 86 82.9 84.4 83.8 80.5 78.5 81.6 74.7 65.4 77.6 80 79.9 82 81.6 79.5 76.3
B6 [45] 84 80.5 82.6 82.8 77.5 71.4 80.4 63.8 36.6 70.8 78.3 77.7 80.8 79.2 77.8 70
B6 + ap [49] 84.7 82 83.8 83.6 79.9 75.9 81.7 69.4 50.4 75.7 80.7 80.7 82.5 81.9 80.1 77.2
B6 + ns [50] 86.4 84.1 85 85 82.4 80 84.1 76.3 65.2 79.6 82.3 81.7 83.7 83.3 83.1 79.8
B7 [45] 84.8 81.3 83.3 82.9 79.8 76.1 81.9 71.6 61.6 76.1 79.9 79.7 81.6 80.5 80.2 75.1
B7 + ap [49] 85 82.5 84.4 84 80.4 75.7 82.1 69.5 48.7 75.4 80.9 81 82.9 81.9 80.1 76.2
B7 + ns [50] 86.8 83.5 85.6 85 82.7 79.1 83.9 74.9 63.2 79.1 82.3 80.9 83.8 82.9 81.5 78.9
V2-S [46] 83.8 79.9 82.1 81.8 76.6 72.7 80 65.6 45.3 73 77.3 76.8 80 78.3 78 71.8
V2-M [46] 85 81.6 83.5 83.1 78.1 74.3 80.9 67.6 46.6 75.2 78.8 78.9 81.4 79.7 79 73.5
V2-L [46] 85.4 82.6 84.2 83.6 77.9 74.9 81.3 70.2 47.1 74.6 80.1 79.6 82.3 80.5 79.3 71.4
NF F0 [5] 83.2 79.9 81.7 81.2 75.4 68.5 77.7 60.3 43.7 67.5 76 75.9 78.9 77.4 75.3 69.5
NF F1 [5] 84.5 81.2 83 82.4 78.4 74.2 80.9 69.5 52.8 73.5 78.2 78.6 80.3 78.8 79.7 75.4
NF F2 [5] 84.9 81.2 82.9 82.2 77.4 75.1 80.6 69.2 56 71.4 78.5 78.6 80.3 79.1 79.5 74.3
NF F3 [5] 85.5 82.3 83.8 83 79.7 77.8 81.8 71.5 60.7 76.1 79.5 80.2 81.4 80.3 80.9 76.9
NF F4 [5] 85.6 82.3 83.9 83.3 80.7 78.5 82.7 73.2 58.9 77 80.5 80.5 81.9 81 81.9 79.4
NF F5 [5] 85.6 82.4 83.4 83.1 79.9 78.5 81.8 72.4 60.8 76.8 79.5 80.8 81.6 80.8 80.8 76.9

The internal working of the deep neural networks with re-
spect to colour sensitivity is still a black box for the research
community. In future, it will be interesting to study the ef-
fect of minor colour changes for the classification of images
and formulate a robustness criterion with respect to colour
sensitivity of deep neural networks. One future direction
of research can be to come up with new data augmenta-
tion techniques with respect to colour variations, which may
make these models more accurate and robust. The influ-
ence of colour on a computer vision system is generally ap-

plication specific, a plant disease detection system must be
sensitive to minor colour variation, on the other hand, an
application dealing with human faces must not be sensitive
to colour because it may be a feature which will compro-
mise with the fairness of the system. The knowledge on
the behaviour of colour information on deep learning will
aid researchers working towards fair, transparent, and ro-
bust learning models to come up with more secure to adver-
sarial attacks [35], robust to image corruptions [40] and fair
models for deployment.
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