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Abstract

Evasion Attacks have been commonly seen as a weak-
ness of Deep Neural Networks. In this paper, we flip the
paradigm and envision this vulnerability as a useful appli-
cation. We propose EAST, a new steganography and wa-
termarking technique based on multi-label targeted evasion
attacks. The key idea of EAST is to encode data as the labels
of the image that the evasion attacks produce.

Our results confirm that our embedding is elusive; it
not only passes unnoticed by humans, steganalysis meth-
ods, and machine-learning detectors. In addition, our em-
bedding is resilient to soft and aggressive image tampering
(87% recovery rate under jpeg compression). EAST out-
performs existing deep-learning-based steganography ap-
proaches with images that are 70% denser and 73% more
robust and supports multiple datasets and architectures.

We provide our algorithm and open-source code at
https://github.com/yamizi/Adversarial-Embedding

1. Introduction

Evasion attacks are arguably one of the most actively
studied security problems in Machine Learning (ML). Most
research focuses on generating an adequate noise to fool an
ML-based system [5], understanding the inherent properties
that make a model sensitive to such noise [18], and improv-
ing the robustness of the model to such perturbations [27].

Hence, research commonly considers that the sensitivity
of models to small perturbations is a major weakness that
needs to be mitigated. However, some voices also argue
that this sensitivity is not only a weakness but also a feature
of the models [6, 28]. For instance, Goodfellow et al. [14]
were the first to suggest that artificial noise can be designed
in a meaningful way to hide and retrieve information.

We argue that an interesting instantiation of this idea is
the development of steganography techniques from evasion
attacks. Steganography is the process of hiding important
information in a trivial medium, e.g., images [4] or audio
files [8]. It can be used to transmit a message between a
sender and a recipient in a way that a malicious third party
cannot detect that the medium hides a message or alter it.

Watermarking is another application case that share the
same embedding protocol. It aims to add invisible informa-
tion into a medium such as only the legitimate recipient can
decode it. In steganography, the sender and the recipient
are different agents and the purpose is to transmit some se-
cret information. In watermarking the encoder and decoder
are generally the same and the purpose is to authenticate
the medium with the “noise” (called watermark) that has
been hidden in the medium. The watermark can be used
to authenticate the medium or for Digital Right Manage-
ment [21]. The images where the perturbation is added are
called cover images and the images after perturbation are
referred to as stego images.

Important properties for steganography and watermark-
ing include the elusiveness of the perturbation, the confiden-
tiality of the encoded message, the density of the encoding
and the robustness of the stego images to tampering.

Unfortunately, traditional steganography approaches are
only effective in low payload density [17] and can easily
be detected by steganalysis tools; i.e. detectors tailored to
detect stego images. They also rely on static heuristics to
decide where and how much perturbation needs to be ap-
plied to the image, which makes them easier to detect once
the heuristic has been disclosed.

The recent advances in Deep Learning (DL) introduced
new approaches for dynamic image steganography, how-
ever, these approaches can guarantee only some of the prop-
erties – but not all [25]. While most DL-based approaches
struggle to reach 0.4 bits per pixels (BPP), Zhang et al.
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[48] proposed a high density generative adversarial network
(GAN) to build the perturbations. Their density can reach 1
BPP. The success rate of the encoding is, however, dataset
specific and drops drastically when the distribution of cover
images differs from the optimal training distribution. This
GAN-based approach is also vulnerable to image tamper-
ing. Zhu et al. [50] focus on robustness to tampering and
propose to train an auto-encoder to recover images under
noise. The robustness is achieved through adversarial train-
ing where the noise is introduced in the training process.
While the generated stego images are robust, this technique
achieves low density (30 bits in a 128 × 128 color image).
Finally, the above approaches require training expensive
models.

In this work, we address these limitations and propose
EAST, a technique for image stenography and watermark-
ing that taps into the burgeoning field of multi-label evasion
attacks. Our approach is plug-and-play and can be used on
top of any dataset and deep neural network. It leverages the
very well-established properties of evasion attacks to craft
steganographic images that are elusive, secure and robust –
all this while achieving high density.

We conduct an empirical evaluation to demonstrate the
viability and potential of EAST on 2 commonly used com-
puter vision datasets (CIFAR10 and ImageNet). We demon-
strate that our technique ensures all the desired properties of
a stenographic scheme: density, the size of the payload we
can correctly decode from a stego image, measured as bits
per pixel (BPP); elusiveness, the ability to pass unnoticed
for a human user and minimally impact the original content;
confidentiality, its ability to avoid detection by steganalysis
tools; and availability, the degree to which encoded mes-
sages can still be recovered if the stego image has been
degraded. Furthermore, we demonstrate that under a sim-
ilar threat model and protocol, EAST achieves better per-
formances against the state-of-the-art deep-learning-based
steganography approaches with images that are up to 70%
denser and 73% more robust.

2. Background and related work

2.1. Steganography and Watermarking

Static steganography and watermarking: Traditional
techniques use either the spatial domain or the frequency
domain to hide information. When operating on the spatial
domain, the algorithm changes some pixels on the image to
embed data. Common techniques are LSB (Least Signifi-
cant Bit) [3] and PVD (Pixel-value Differencing) [44]. Ad-
vanced techniques like HUGO [31] can hide 7 times longer
messages than LSB at an identical level of detectability and
WOW [15] uses syndrome-trellis codes to minimize the ex-
pected distortion applied to a given payload.

Frequency domain steganography relies instead on fre-

quency distortions [23] to produce the perturbation, such
as discrete cosine transform, discrete wavelet transform,
and singular value decomposition. The most prominent ap-
proaches include J-UNIWARD [16] and F5 [43].

These methods suffer from relying on fixed heuristics to
choose the area and amount of perturbation to add to the
cover image. It makes the statistics of the collected images
easy to detect, extract and reverse engineer.

Machine Learning (ML) then Deep Learning (DL) ap-
proaches have been proposed to overcome these limitations
and encode the message without any static heuristic.

Deep-learning steganography and watermarking:
Tang et al. [42] proposed ADV-EMB, a technique that
uses traditional statistical heuristics (UNIWARD) to hide
the message then an evasion attack against the detector to
update the heuristic to make it less detectable.

While the generated stego images can reach high elusive-
ness with small messages, its elusiveness drops significantly
with the increased density. Contrary to ADV-EMB, we do
not use evasion attacks only to fool a detector but rely on the
perturbation themselves to carry the data. By doing so, our
method achieves both high elusiveness and high density.

With the recent advances in Generative Adversarial Net-
works (GAN), a new generation of steganography tech-
niques based on GAN has emerged. Volkhonskiy et al. [40]
introduced SGAN a three-part GAN where the generator is
trained simultaneously with a discriminator (to ensure the
realism of cover-images) and a steganalyser (i.e a detector
that tries to distinguish clean images and stego images) to
ensure elusiveness. SSGAN [36] was later proposed to im-
prove the quality of images generated following the pro-
tocol of SGAN. Wang et al. [41] proposed another GAN
architecture that generates images that look realistic.

Following a similar architecture, SteganoGAN [48] and
HiDDen [50] were proposed. These techniques consist of
an Auto-encoder where the critic (a steganalyzer) is used to
ensure that the generated images are elusive. SteganoGAN
proposes novel deep neural network layers that maximize
the density of the payload at the expense of the accuracy of
the recovered message. HiDDen proposes to add a differ-
entiable noise layer between the encoder and the decoder
and train the whole model at once. This layer ensures that
the loss reconstruction takes into account potential pertur-
bations of the images and generates robust stego images. It
is however restricted to low-density scenarios and vulnera-
ble to ML steganalysers.

These GAN-based approaches have been designed to op-
timize a specific property – elusiveness, robustness, or den-
sity – but no approach can reach decent levels in all prop-
erties. Instead of designing a mechanism from scratch, we
suggest building the steganographic approach on top of the
rich literature about evasion attacks.Our approach increases
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Figure 1: Sending and decoding a stego image: When Alice sends a crafted image to Bob, it may be perturbed (benignly or
maliciously) during transmission. In the steganography use case, Mallory may try to detect if the image contains any hidden
message and Bob can recover the original message. In the Watermarking use case, Mallory may use the image without
authorization. Alice can decode the watermark even after tampering and detect the theft.

both the density and security properties of the stego images.

2.2. Evasion attacks

Adversarial examples use intentional minor perturba-
tions to original inputs to alter the prediction of an ML
model. Since the first attack algorithms, researchers have
played a cat-and-mouse game. They design defense mech-
anisms such as distillation [29], adversarial training [22],
generative adversarial networks [34] to protect the ma-
chine learning models. Meanwhile, they also elaborate
stronger attack algorithms to evaluate and circumvent these
defenses, e.g., PGD [27] and AutoAttack [5].

The literature related to applications of adversarial ex-
amples is scarce and mainly focuses on their ability to fool
ML-based systems used for, e.g., image recognition [35],
malware detection [1] or porn filtering [47]. In this work,
we rather consider adversarial examples as a useful means
of embedding and hiding secret messages.

Traditional targeted evasion attacks target single-label
classifiers: only the most probable class is targeted. Build-
ing a steganographic mechanism on top of these attacks is
fruitless as it would yield a very low payload density. For
instance, attacking the most probable class for an ImageNet
classifier with 1,000 classes and 256 image size would re-
sult in a density up to log(1000)

log(2)×256×256 = 1.5 ·10−4BPP (bits
per pixels), far from the standards of 0.2 BPP expected from
steganography schemes.

Early work on multi-label evasion attacks [37, 45] were
able to attack up to 18 labels simultaneously, but already
required large distances ε and used large image datasets. To
achieve competitive payload density, we need to target 20
times more labels. Our approach can attack up to 400 labels
simultaneously on small pictures, and reach v 0.4 BPP.

3. Approach
Notations: Assume we have a multi-label classification
problem with a set L of labels. We have |L| = m. Let
Z = X × Y a measurable binary multi-label space, with
X = Rd andY = {0, 1}m, where d is the feature dimension
and m is the number of labels. Let function H : X → Y
be a multi-label classifier and function F : Rd → Rm be
a multi-label predictor that predicts continuous probability
scores. These scores indicate the confidence for each label.

Let F (x) = {f1, ...fm} and H(x) = {h1, ...hm} ∀x ∈
X where fj(x) is the prediction associated with label hj(x).
Using a classification threshold t, we can induce H from F
with, hj(x) = I[[fj(x)≥t]], where I[[.]] is an indicator func-
tion, that is, I outputs 1 if the probability score is equal or
above the threshold and 0 otherwise.

Let D = (xi, Yi)
N
i=1 be our dataset with xi ∈ X and

Yi ∈ Y . We learn the multi-label predictor F (x; θ) with
parameter θ by solving an optimization problem

min
θ

1

N

N∑
i=1

l (F (xi; θ) , Yi) , (1)

where l(f(xi; θ), Yi) is our multi-label loss function.

3.1. Multi-label evasion attacks

Objectives Given an input x, an evasion attack on a multi-
label classifierH under a maximal perturbation ε is success-
ful if and only if it produces a perturbation δ such that:

1. ‖δ‖p ≤ ε;

2. x and x+ δ share the same ground truth label Y ;

3. H(x+ δ) 6= H(x),
i.e., ∃i ∈ L such that hi(x+ δ) 6= hi(x).
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where i is the index of the targeted task and ε the maxi-
mum perturbation size using a norm p.

This general definition of evasion attack is non-targeted
as it is not concerned by the individual state of the labels as
long as one label is flipped from its original state.

In our use case, we want to control the value of all labels.
Therefore, we aim for multi-label targeted attacks on bi-
nary classifiers. Let A ⊂ L and A = L \A. L is the subset
of labels we enforce to be 1 while A is the subset of labels
we enforce to be 0. Then a targeted attack is successful iff:

1. ‖δ‖p ≤ ε;

2. x and x+ δ share the same ground truth label Y ;

3. ∀(i, j) ∈ A×A ; hi(x+ δ) = 1 and hj(x+ δ) = 0.

Multi-label targeted attacks error optimization A
common definition [37] of multi-label targeted evasion at-
tacks minimizes the class prediction error under a fixed bud-
get of perturbation:

maximize
δ

∑
i∈A

I(hi(x+ δ) = 1) +
∑
i∈A

I(hi(x+ δ) = 0)

subject to ‖δ‖p ≤ ε,
(2)

where ε is a perturbation budget under a norm p and I(.)
an indicator that outputs 1 if the equality (.) inside holds and
0 otherwise. Equation 2 caps the amount of perturbation. It
enforces the properties of Elusiveness and Confidentiality if
the ε value used in the optimization is low enough.

3.2. EAST: Evasion Attack STeganography

Overview (see Figure 1). Our objective is to design an
approach for image watermarking and steganography that
relies on the known properties of adversarial examples. Its
principle is to encode a message as an adversarial image.
More precisely, EAST associates the data to encode with a
corresponding set of labels. Each binary label is a bit of the
encoded message. Then, our algorithm crafts the adversar-
ial image in such a way that a given multi-label model Mθ

classifies the image into the desired labels. To decode the
message, the recipient uses the same model to retrieve its
set of labels and map these labels back to the original data.

The encoder/decoder: A multi-label model. The model
Mθ acts as a secret key for both embedding and decod-
ing. We assume that the model can be transmitted from
the sender to the recipient without being intercepted or al-
tered, e.g. through a secure physical device. The model also
impacts the success rate of the evasion attack.

EAST can use any multi-label image classification
model. Multi-label tasks are generally associated with im-
age segmentation or top-k label prediction. However, com-
mon datasets of this task (COCO [24], VOC [11]) only han-
dle few dozen labels. For our approach to achieve high den-
sity, we need models with a multiple orders of magnitudes
more labels – at least 400 labels in our experiments.

We build these classifiers using CIFAR10 and Imagenet
datasets. To obtain a large number of outputs, we slice the
last dense layer. In Figure 2, the penultimate layer becomes
the logit layer and we include a sigmoid activation then a bi-
nary threshold. For instance, a 10-class single label Cifar10
Resnet20 model becomes a 4096 logits multi-label model.
θ denotes the set of parameters that define the model.

In DNN classifiers, the parameters include the architecture
(number, types, and inner parameters of the layers), the
weights of the layers learned during training, the loss, and
the regularizers.

The adversarial attack A. The actual generation of the
adversarial example can use any existing attack algorithm
A. The hyperparameters of the attack include the maximum
amount of perturbation allowed on images as well as attack-
specific parameters. The choice of the attack algorithm and
its parameters impacts the success rate and the elusiveness
of the attack. However, this choice does not have to be re-
vealed to the recipient.

The literature of evasion attacks offers a large variety of
algorithms. Some are gradient based attacks (FGSM [14],
PGD [27], Momentum (MIM) [9], AutoAttack [5]), while
others are Evolutionnary (CoEva2 [13], OnePixel [38]).

EAST algorithm. Algorithm 1 formalizes our approach.
First, buildLogits (Line 1) transforms the binary mes-

sage into the model logits.
Given a set of images, some may produce better stego-

images (high success rate with small perturbation) than oth-
ers. We implement a search restart (Lines 4-5), where we
select the cover images from the set best suited to embed the
data. The internal procedure coverP ick selects the cover
images whose original logits are close to the encoded mes-
sage to bootstrap the search for optimal perturbations.

We build EAST using mechanisms from MIM [9], im-
plemented in the internal procedure computeAdv (line 9).
However, the iterative attack gets stuck in a local optimum
when the number of labels to flip increases. To overcome
this phenomenon of gradient-lock (i.e. when the gradient
gets almost null because of the number of labels to flip), at
each step of the iterative attack, we add a random perturba-
tion inside a sphere of starting radius δ around the gradient-
based adversary. To ensure convergence, we linearly reduce
this radius δ at each iteration step.
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Figure 2: A typical architecture of an image classifica-
tion CNN: A classification neural network ends a series of
convolution and pooling layers with a set of dense layers.
In EAST, The last dense layer (with the classification log-
its, 64×10) is removed after the model has been trained.

Error Correcting Codes: While traditional techniques
ensure 100% success rate in the encoding and decoding of
messages, deep learning techniques may not always achieve
perfect performances. This is the case for both GAN-based
techniques [48] and our technique based on evasion attacks.
Given a maximum budget of perturbation ε, the attack can
fail to successfully flip all required labels, and the recovered
message may contain errors.

We, therefore, rely on error correction codes, a signal
processing technique to correct errors. In short, this tech-
nique builds a reduced dictionary containing only words
with maximum separability. Then, it rewrites the message
only with the words of this reduced dictionary. With a
lookup into the dictionary, it can guess which words have
been corrupted (words of the message not in the dictionary)
and infer the original words. Error correction algorithms
differ in the way they build the dictionary, and how they
evaluate the corrupted words and recover the original ones.

In our approach, we use Reed–Solomon error correction
algorithm [33] (RS-Codes), which is one of the most com-
mon error correction technique. RS-Codes can transform
a message Ml of length l into a message Mm of length m
such that it can recover the original message Ml if the new
message Mm has at most m−l2 errors.

Given the success rate of the evasion attack s, RS-Codes
on a message of length m can recover the message Ml if
(1− s).m ≤ m−l

2 . As a result the message correctly recov-
ered is as long as l ≤ (2s − 1).m. In practice, this means
that if our attack has a success rate of 90% when encoding a
message with 1 BPP density, the actual message that could
be recovered without error is only of a density of 0.8 BPP.

4. Experiment

4.1. Metrics

BPP: Bits Per Pixels reflects the density of the embed-
ding. It is computed as the ratio of total size of the encoded
message (# bits) over the size of the image (width . height).

Algorithm 1: EAST algorithm
input : A classifier Mθ; A dataset of cover images I and

encoded message Denc; step size εstep;
maximum perturbation size ε; initial random
sphere size δ; total iterations L; Number of cover
restarts R;

output: bestAdv: The stegano-images that encode Denc

1 logits← buildLogits(Denc,Mθ);
2 bestRate← 0 ;
3 bestAdv← Null ;
4 for j ← 1 to R do
5 Istart ← coverPick(I ,logits);
6 advX ← Istart ;
7 momentum← 0 ;
8 for i← 1toL do
9 advX , momentum← computeAdv(advX ,

logits, Istart, εstep, ε, momentum)
10 advXnoised← randomSphere(advX , i, δ)
11 success← computeSuccess(Mθ , advX ,

logits, m);
12 successnoised ← computeSuccess(Mθ ,

advXnoised, logits);
13 if success ≤ successnoised then
14 success← successnoised;
15 advX ← advXnoised;
16 end
17 if bestRate ≤ success then
18 bestRate← success;
19 bestAdv← advX;
20 end
21 end
22 end

BSR: Bits Success Rate is a natural performance metric to
evaluate the quality of the embedding. It is the percentage
of bits that are correctly decoded from a stego-image.

RS-BPP: Reed-Salomon Bits Per Pixels is the metric de-
rived from the Error Correcting Codes and the BSR, and we
have: RS-BPP = (2.BSR− 1).BPP

SSIM: Structural Similarlity Index Metric [49] roughly
measures how close two images are. It is known to be a
better metric than others like signal-to-noise ratio (PSNR)
and mean squared error (MSE) [12].

SSIM can be expressed between two images x and y as

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3)

where µx and µy the mean of x and y respectively; σx
and σy the variance of x and y respectively and σxy their
associated covariance; C1 and C2 stabilize the division;
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Requirement Watermark Steganography
Effectiveness (RQ1) X X

Elusiveness (RQ2) X X
Confidentiality (RQ3) X

Availability (RQ4) X

Table 1: Expected properties for both use cases of water-
marking and steganography.

4.2. Research Questions

Our evaluation assesses whether EAST can serve as a
secure steganography and watermarking technique.

Table 1 highlights the security requirements for the two
applications. Effectiveness refers to the ability to perform
the embedding and reach a high density. Both applications
require that the embedded message be elusive – i.e. the mes-
sage should not alter the media and the perturbation should
not be visible. The difference between the two applications
lies in that steganography expects the message to remain
confidential and any third party should not be able to de-
tect the message and apply steganalysis techniques. On
the other hand, watermarking requires resilience to data de-
struction, i.e., the availability of the encoded information.

Our first research question is to check if EAST is a viable
approach for steganography:

RQ1 What is the success rate and density that EAST
achieves?

We assess the success rate (BSR) and density (RS-BPP)
of EAST under different perturbation budgets ε. Density is
an important property to evaluate, which is especially rele-
vant for steganography. We, therefore, run our experiments
under two payload capacities: 410 bits and 1024 bits. 410
bits represent a density of 0.4 BPP – a typical expectation
for practical stenography approaches [17] and 1024 bits rep-
resent a density of 1 BPP – the highest density achieved by
state of the art techniques (SotA) [48]. We compare, for
each message size, the performance of EAST with the SotA.

Our next research question focuses on the ability of
EAST to avoid being noticed. Thus, we ask:

RQ2 Does EAST produce elusive perturbations?

We evaluate elusiveness by measuring the similarity –
with the SSIM metric – between the cover image and the
image that EAST produces. We do this measurement for
multiple ε values and embedding densities. We also evalu-
ate the tradeoff between success rate and similarity.

Elusiveness is not sufficient, especially in the use case of
steganography where detectors exist. We, therefore, check
the confidentiality of EAST, that is, whether steganalysis
can detect EAST’s adversarial examples. We ask:

RQ3 Can EAST be detected by steganalysis?

We assess the detectability of the cover images against 2
detectors. The first is Sample Pair Analysis (SPA) [10] and
it is one of the most common statistical steganalysis tech-
niques. Statistical steganalysis recognizes the noise profile
of different steganography techniques.

The second detector is the ML steganalysis approach of
Ye et al [46]. This is the state-of-the-art approach and it
supports different threat models. In our experiments, we
evaluate three threat models: blackbox (the interceptor has
access to unrelated sets of perturbed images and clean im-
ages), graybox (the interceptor has access to pairs of clean
and perturbed images but does not know the hyperparame-
ters of the generation process), and whitebox (the intercep-
tor has full access to the generation process).

After studying the confidentiality of the embedded infor-
mation, we turn our attention towards its availability when
reaching the recipient. Availability is threatened by mali-
cious image degradation. Hence, we want to ensure that
decoding tampered images still yields the original message.
We consider spatial domain degradation resulting from ba-
sic image transformations (rotation, upscaling, and crop-
ping) as well as frequency domain degradation like JPEG
compression and color depth reduction. This property is
critical for the Watermarking use case. Thus, we ask:

RQ4 Does EAST resist to image tampering?

First, we focus on Spatial Domain degradation and three
local image alterations: rotation (we rotate the images by
15°); upscaling (bilinear interpolation to resize the images
to 64x64 pixels); cropping (removing 12.5% of the images,
keeping only the central part). These transformations are
common when copyrighted images are shared illegally [32].

Second, we study the impact of Frequency Domain
degradation: JPEG compression and Color Depth Reduc-
tion (CDR). JPEG compression relies on various steps
(color transformation, DCT, quantization) that cause infor-
mation loss. CDR reduces the number of bits used to encode
different colors. We apply JPEG compression with 90% and
50% quality rates (resulting in loss of information of 10%
and 50%, respectively) and CDR (to 8 bits, i.e. pictures with
only 1/12 of the original information).

We measure for each transformation the recovery rate of
the transformed images; i.e. the percentage of images where
the corrupted and original images have the same label.

4.3. Experimental setting

The experiments were performed on a Tesla V100-
SXM2-32GB GPU on an Nvidia DGX. The EAST algo-
rithm is implemented on top of the torchattacks [19] li-
brary. The RS-Codes rely on the python implementation of
Reed-Solomon Codes [39]. The comparison with the SotA
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Figure 3: Left: Cover image, Right: Stego image;
From ImageNet; SSIM 99.8%

is done using the authors’ original library. To implement
EAST, we use pre-trained Pytorch Zoo [30] Resnet20 on
CIFAR10 [20] and Resnet18 for ImageNet [7].

We evaluate EAST under a maximum bud-
get of 500 iterations and perturbation size of
ε ∈ {8/255, 16/255, 0.1, 0.3, 0.5, 1} to cover all the
possible range under `∞ norm. We target an embedding
density of 0.4BPP (410 bits) and 1BPP (1024 bits). We use
a momentum of 1 and we linearly decrease the size of the
random dual sphere starting with a radius of 10−2 · ε.

Baselines and State of the Art Liu et al. [26] provide an
extensive evaluation of DNN and GAN-based steganogra-
phy. These techniques suffer from a low embedding capac-
ity and will not be evaluated in this study.

Instead, we evaluate our approach against the highest
density technique available in the literature. This technique
is STEGANO-GAN [48], a novel steganography scheme that
achieves a density of up to 4 BPP on some specific datasets.

5. Results and analysis
5.1. RQ1: Effectiveness

Table 2 shows that EAST can reliably encode and decode
messages, with a bit success rate up to 86.2% and a message
density of 0.373 BPP.

Besides, EAST does not suffer from a large drop in suc-
cess rate (BSR) when embedding more bits: Moving from
0.4 BPP (410 bits, i.e. 410 labels) to 1 BPP (1024 labels)
causes only a slight drop under a small perturbation budget
ε = 8/255: The success rate drops from 0.586 under 0.4
BPP to 0.528 under 1BPP. Similarly, it drops from 0.862 to
0.692 under a high perturbation budget.

This last result hints that building neural networks with
a larger logits layer can lead to ever-increased data density
with limited impact on the success rate.

5.2. RQ2: Elusiveness

We also compare in 2 the performance of EAST with the
SotA “SteganoGAN” both in terms of density and image
similarity. Under similar RS-BPP (0.219 for SteganoGAN

and 0.260 for EAST), our approach achieves an image sim-
ilarity (SSIM) up to 0.931 while SteganoGAN is capped at
0.466. Our encoded images are imperceptible, even for a
human operator. Our approach also achieves a 0.373 RS-
BPP given a sufficient perturbation budget (ε = 1).

Comparing the hyper-parameters of EAST, there is a sig-
nificant tradeoff between visual similarity and density: The
average similarity of the encoded images drops from 0.771
under a perturbation size of ε = 8/255 to 0.308 under a
perturbation size of ε = 1. However, using the cover pick
strategy introduced in Algorithm 1, we can find cover im-
ages that achieve 0.689 SSIM under a perturbation size of
ε = 1. This confirms that EAST can allow both high den-
sity and similarity if the sender has access to a pool of cover
images and the algorithm can pick the best ones.

5.3. RQ2: Confidentiality

Table 3 confirms that our approach and the SotA are
both resilient to statistical analysis (SPA). While our ap-
proach resists well to blackbox and graybox ML steganal-
ysis (with a respective detection rate of 0.571 and 0.682),
SteganoGAN is always detected under these threat models.

EAST resists whitebox steganalysis under small pertur-
bation budgets. However, adding more noise makes EAST
vulnerable under this threat model. The resilience of EAST
to Whitebox detectors can be explained by the inherent ran-
domness introduced by EAST thanks to the random pertur-
bations at each step of our iterative attack (random explo-
ration) and the stochastic nature of gradient descent.

Our results show that the sweet spot for steganalysis is
when the images are encoded with a medium perturbation
budget. The steganalyser of Ye et al. [46] may have a ca-
pacity tailored to this amount of perturbation, and its per-
formance degrades when the perturbation size increases.

5.4. RQ3: Availability

We evaluate spatial-domain tampering in Table 4 and
frequency-domain tampering in Table 5. While images em-
bedded using SteganoGAN fail to recover the original mes-
sage (up to 51% bits are lost when the images are rotated),
EAST provides high robustness against spatial tampering.
Up to 88.9% of the bits in the rotated images are identical to
the non-tampered images. EAST shows similar robustness
against Scaling and Cropping. Increasing the amount of
perturbation has little impact on EAST’s robustness to spa-
tial tampering. While up to 88.9% of the bits are recovered
from rotated images with small perturbation (ε = 8/255), it
only drops to 84.0% under ε = 1.

EAST is also more robust than SteganoGAN against im-
age JPEG compression and bit depth reduction. While only
up to 54.6% of the bits are preserved with SteganoGAN,
EAST can preserve up to 89.1% of the bits when the depth
is reduced and up to 86.7% when compressed at 50%.
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Algorithm 410 bits / 0.4 BPP 1024 bits / 1 BPP RS-BPPmax
ε SSIMmax SSIMmean BSRmax BSRmean SSIMmax SSIMmean BSRmax BSRmean

EAST 8/255 0.995 0.771 0.586 0.507 0.994 0.758 0.528 0.490 0.068
16/255 0.989 0.756 0.648 0.549 0.989 0.756 0.556 0.508 0.117

0.1 0.984 0.743 0.675 0.583 0.984 0.744 0.573 0.526 0.143
0.3 0.930 0.645 0.786 0.686 0.931 0.646 0.634 0.578 0.260
0.5 0.865 0.534 0.828 0.731 0.864 0.535 0.662 0.601 0.314
1 0.689 0.308 0.862 0.782 0.689 0.323 0.692 0.639 0.373

SteganoGAN - 0.194 0.118 0.620 0.604 0.466 0 0.623 0.603 0.219

Table 2: Effectiveness and elusiveness, for 0.4 BPP and 1 BPP encoding. Best values in bold.

Algorithm SPA Ye et al. Steganalysis
ε Blackbox Graybox Whitebox

EAST 8/255 0.5 0.571 0.682 0.75
16/255 0.5 0.707 0.921 0.964

0.1 0.5 0.842 0.967 0.979
0.3 0.5 0.981 0.905 0.968
0.5 0.5 1 0.977 0.994
1 0.5 0.633 0.833 0.992

SteganoGAN - 0.5 1 1 1

Table 3: AUC of Steganalysis detector at 1BPP

Algorithm Rotation Scaling Cropping
ε mean max mean max mean max

EAST 8/255 0.767 0.887 0.767 0.880 0.720 0.833
16/255 0.740 0.866 0.733 0.887 0.698 0.819

0.1 0.714 0.863 0.708 0.871 0.681 0.798
0.3 0.658 0.831 0.650 0.861 0.639 0.716
0.5 0.633 0.840 0.630 0.818 0.593 0.707

SteganoGAN - 0.482 0.513 0.582 0.634 0.504 0.524

Table 4: Robustness against spacial-domain degradation

Algorithm Depth JPEG 90 JPEG 50
ε mean max mean max mean max

EAST 8/255 0.774 0.879 0.768 0.864 0.771 0.867
16/255 0.749 0.891 0.738 0.842 0.736 0.854

0.1 0.717 0.869 0.708 0.845 0.710 0.825
0.3 0.656 0.857 0.650 0.838 0.652 0.835
0.5 0.639 0.817 0.633 0.822 0.631 0.785

SteganoGAN - 0.521 0.546 0.512 0.520 0.490 0.510

Table 5: Robustness against frequency-domain degradation

6. Limitations and opportunities

Unlike existing steganography techniques, EAST is not
impacted by the size of the input images but by the size of
the logits layer of the neural network.

In Table 6 we show that we achieve a better success rate
with a model tailored for ImageNet. For example, Fig-
ure 3 shows a combination of cover and stego images that
achieves high elusiveness with a reliable success rate on Im-
ageNet. The model has a 6 times larger logits layer but
requires images 64 times bigger than Cifar10 (256×256 vs
32×32). The larger size of images decreases the RS-BPP of
EAST. To offset this larger size, we can increase the size of
the logit layer by the same factor. Hence, for a fair compar-
ison, we evaluated our research questions under the same
testbed and experimental setting for EAST and the SotA.

Another benefit of EAST is that it immediately benefits
from the advances in evasion attack research. Techniques
that propose stronger attacks with smaller perturbations can
substantially improve EAST. Additionally, gradient attacks
can be designed in an adaptive way: their loss functions are
tuned to take into account specific objectives (resilience to
steganalysis, robustness to compression/feature squeezing
as proposed by [2]). This strong link with evasion attack
research gives EAST a substantial competitive advantage
against all the other techniques. These techniques require
their own line of research to achieve similar improvements.

Elusiveness Steganalysis
ε SSIM BSR RS-BPP Black Gray White

8/255 0.998 0.742 0.009 0.625 0.958 0.970
1 0.790 0.974 0.019 0.974 0.989 0.989

Domain Spatial Tampering Frequency Tampering
ε Rotate Scale Crop Depth JPEG 90 JPEG 50

8/255 0.721 0.799 0.686 0.781 0.800 0.799
1 0.527 0.630 0.535 0.569 0.585 0.565

Table 6: Evalution of EAST on ImageNet model at 1024bits

7. Conclusion
We proposed EAST, a new technique to hide secret mes-

sages in images using evasion attack algorithms. We pro-
posed an algorithm for large-scale multi-label targeted eva-
sion attacks and demonstrated that EAST is an effective,
elusive, secure, and flexible technique for steganography
and watermarking . We have also shown that our multi-label
evasion attack, combined with appropriate DNN, enables
large payloads embedding while preserving the security cri-
terion and significantly outperform SotA on all criteria.

An inherent benefit of our approach is that it leverages
targeted evasion attack algorithms and research. Therefore,
our technique can take advantage of any future development
coming out from this highly active research area.

Evasion attacks are not restricted to vision tasks, and fu-
ture work should expand our study to larger models and
tasks. In particular, other media where adversarial exam-
ples have shown mature results such as audio, video, and
text can be transformed using EAST into means of hiding
data, with tangible industrial applications for digital right
management and privacy.
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[31] Tomáš Pevný, Tomáš Filler, and Patrick Bas. Using high-
dimensional image models to perform highly undetectable
steganography. In Rainer Böhme, Philip W. L. Fong, and
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