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Abstract

We design blackbox transfer-based targeted adversar-
ial attacks for an environment where the attacker’s source
model and the target blackbox model may have disjoint la-
bel spaces and training datasets. This scenario significantly
differs from the “standard” blackbox setting, and warrants
a unique approach to the attacking process. Our methodol-
ogy begins with the construction of a class correspondence
matrix between the whitebox and blackbox label sets. Dur-
ing the online phase of the attack, we then leverage repre-
sentations of highly related proxy classes from the whitebox
distribution to fool the blackbox model into predicting the
desired target class. Our attacks are evaluated in three com-
plex and challenging test environments where the source
and target models have varying degrees of conceptual over-
lap amongst their unique categories. Ultimately, we find
that it is indeed possible to construct targeted transfer-
based adversarial attacks between models that have non-
overlapping label spaces! We also analyze the sensitivity
of attack success to properties of the clean data. Finally,
we show that our transfer attacks serve as powerful ad-
versarial priors when integrated with query-based methods,
markedly boosting query efficiency and adversarial success.

1. Introduction
The intrigue of blackbox adversarial attacks is that only

limited knowledge of the target model is assumed, making
them more difficult but also more practical. Of the several
blackbox techniques, transfer-based attacks have become
popular because they do not rely on repetitively querying
the target model during attack generation [5, 35, 15, 14, 27].
While modern query-based methods are powerful [3, 12,
33], they are susceptible to simple input rate throttling de-
fenses because they often require thousands of inquires per
adversarial example. Despite this no-query advantage, a
glaring weakness in the design and evaluation of current
transfer attacks is the implicit assumption that the attacker’s
source model is trained on the exact same dataset as the

Figure 1: Overview of attack setup and procedure.

target blackbox model! This oversight is largely due to the
common practice of testing transfers exclusively between
pre-trained models from the same benchmark dataset (e.g.,
MNIST, CIFAR-10, and ImageNet) and has likely lead to
overly optimistic estimates of transferability that may not
translate to real-world settings, in which an attacker may
not have access to the target model’s data.

In this work, we explore the potency of transfer attacks
in a much more restrictive setting, where this shared dataset
assumption is eliminated. We draw inspiration from the re-
cent findings of Inkawhich et al. [14], who observe that tar-
geted transfer attacks maintain potency when there is zero
training data overlap, yet significant label space overlap be-
tween the source and target models. Taking it a step further,
here we investigate the feasibility of targeted transfer at-
tacks when not only is there zero training data overlap, but
also no label space overlap between the source and target
model training distributions. Upon initial consideration, the
premise of this disjoint label space transfer scenario may
seem absurd. The formulation of most contemporary tar-
geted attacks (including [14]) boils down to maximizing the
likelihood of a target class. However, if the attacker’s white-
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box model does not have the target class in its label space,
how can targeted transfer be optimized for? Our primary
goal is thus to probe whether or not it is possible to achieve
attack success in such settings, and if so, to what extent.

Figure 1 shows a basic overview of our attack setup and
procedure. Given a whitebox and blackbox model that are
trained on unique class sets, we propose first construct-
ing a correspondence matrix from the blackbox’s predic-
tions on samples from the whitebox distribution, to iden-
tify any relationships that exist between classes across la-
bel spaces. This is followed by an adversarial noise gen-
eration phase, which leverages highly-related proxy classes
from the whitebox’s label space to induce the desired tar-
geted response by the blackbox. Intuitively, our pro-
posed attack methodology seeks to exploit a shared fea-
ture set, along with a set of potentially shared adversarial
sub-spaces [19, 27] between the two training distributions,
whose presence is suggested by high responses in the cor-
respondence matrix.

As a part of our core experiments, we design several
unique test environments of varying difficulty that re-define
the whitebox and blackbox training distributions. Ulti-
mately, we find that in each environment a variety of target
classes in the blackbox model’s label space can be reliably
attacked. We also observe the particular adversarial noise-
generation algorithm can have a large impact on transfer-
ability and error rates. Specifically, attacks that leverage
the intermediate feature space of the whitebox [13, 14] ap-
pear to be more potent than attacks that use the output
layer [5, 23]. Finally, we perform experiments where small
amounts of queries to the blackbox model are allowed dur-
ing attack generation, and find that our transfer attacks can
be used as powerful priors to reduce the number of queries
necessary to achieve targeted attack success. Overall, we
demonstrate that it is in fact possible to achieve targeted
transfer between models with no label space overlap and
outline a novel method for exploiting such a vulnerability.

2. Related work
“Standard” transfer attacks. Within the topic area of

blackbox transfer-based adversarial attacks [18], there are
several predominant methodologies for creating adversarial
noise, and one overwhelmingly popular way to evaluate at-
tack effectiveness. Most works closely follow the design
of whitebox attacks [8, 25, 17], and incorporate additional
optimization tricks and regularization terms in an effort to
reduce over-fitting to the whitebox model’s decision bound-
aries and architecture [5, 6, 22, 35, 36, 23, 39]. Uniquely,
feature space attacks create adversarial noise to manipu-
late the intermediate layer representations of the white-
box, and in many cases achieve state-of-the-art transferabil-
ity [30, 15, 11, 13, 24, 21, 14]. The “standard” approach to
evaluate these attacks is to transfer between different model

architectures trained on the same benchmark datasets (e.g.,
CIFAR-10 or ImageNet). Thus, the measurement of trans-
ferability refers to attack potency across deep neural net-
work (DNN) architectures, but carries the (significant) im-
plicit assumption that the models have been trained on the
exact same data distribution and label set.

Reducing attacker knowledge. Some recent works
have considered blackbox transfer attacks in more strict set-
tings, where the shared dataset assumption is relaxed. Both
Bose et al. [2] and Li, Guo and Chen [20] develop un-
targeted attacks in the non-interactive blackbox (NoBox)
threat model, which specifies that the attacker: (1) may
not issue queries to the target model; and (2) has a “refer-
ence dataset” which is sampled from the same distribution
as the target model’s training set (so, the label space turns
out to be the same). By contrast, we focus on targeted at-
tacks and do not assume access to any data sampled from
the blackbox distribution when training our whitebox mod-
els. Naseer et al. [27] train a generator network to produce
image-agnostic un-targeted attacks between models with no
label space overlap; however, do not consider targeted at-
tacks within this threat model. Lastly, Inkawhich et al. [14]
construct “cross-distribution” transfer scenarios with zero
training data overlap but significant (yet incomplete) label
space overlap between the whitebox and blackbox models.
Through experiments, they confirm that targeted adversar-
ial examples can be constructed for the overlapping classes,
but do not attempt to attack any non-overlapping classes.

3. Methodology
3.1. Establishing class correspondences

The first phase of our attack methodology is to model the
relationships between the classes of the whitebox and black-
box. Note, this step is unique to our disjoint label space
setting, as in previous works the class relationships are ex-
plicitly encoded by the intersection of the label sets. We
accomplish this task by forward passing a limited amount
of data from each category of the whitebox model’s train-
ing distribution through the target model and recording the
predictions in a class correspondence matrix. Intuitively,
this matrix describes how the blackbox model responds to
the presence of whitebox data features, which will become
relevant when constructing adversarial perturbations.

Although the whitebox data is technically out-of-
distribution (OOD) w.r.t. the blackbox’s training set, the
closed-world assumption commonly made during DNN
training means the blackbox has poor confidence calibra-
tion on OOD data [1], allowing for this type of analysis. As
an attacker, we make note of any hot-spots in the correspon-
dence matrix, which represent promising (target, proxy) re-
lationships to potentially exploit (e.g., (leopard, cat)
and (spider, ladybug) in Figure 1). Importantly, we
consider this step to occur “offline” w.r.t. the actual attack,

42



as it is only necessary to do once (before computing any
adversarial examples) and does not involve inputting adver-
sarially perturbed data through the target model.

It is worth noting a few basic assumptions made in this
step. First, we assume the adversary has at least some sam-
ples from the training distribution of their own whitebox
models, as opposed to only having a pre-trained model.
We believe this to be a realistic assumption, as in most
cases the attacker may either be using a model trained on
a widely available benchmark dataset, or would have had to
train the model themselves. The second assumption is that
the attacker is allowed to issue a small amount of queries
to the target model and receive predictions (only the pre-
dicted class is necessary, not the full probability vectors).
Since this is the most basic function of an “oracle” black-
box model, we believe this to be reasonable.

3.2. Computing adversarial perturbations
The second phase of our methodology is to construct the

targeted adversarial perturbations. We start with a clean im-
age x and target class ytgt from the blackbox distribution.
The goal is then to compute adversarial noise δ using the
whitebox model such that the blackbox model classifies the
adversarial example x + δ as ytgt (as shown in the bottom
of Figure 1). To do this, we first index the class correspon-
dence matrix with ytgt to find a highly correlated proxy
class yproxy from the whitebox distribution that can be
used to represent ytgt during attack generation. Intuitively,
since ytgt and yproxy images are interpreted similarly by
the blackbox model, imparting the features of yproxy onto
x through an adversarial noising process may in-turn cause
the blackbox model to misclassify the adversarial example
as ytgt. We explore two fundamentally different approaches
for optimizing the adversarial noise: decision-space meth-
ods and feature-space methods.

Decision-space Attack. Decision-space methods work
to directly manipulate the output-layer signals of the white-
box model. Often, this is accomplished by minimizing the
classification loss w.r.t. a designated target class (in our case
yproxy). Thus, the adversarial perturbation is quasi-optimal
for the whitebox, as it is designed to traverse exact deci-
sion boundaries. Let f represent the whitebox model and
f(x) be the predicted probability distribution over its set of
classes. We use the powerful Targeted Momentum Iterative
Method (TMIM) [5] as a representative of decision-space
attacks, whose optimization objective is

min
δ∈S(x;ε)

H
(
f(x+ δ), yproxy

)
. (1)

Here, H(f(x + δ), yproxy) is the cross-entropy between
the whitebox’s predicted distribution and yproxy . The con-
straint S(x; ε) defines an allowable perturbation set w.r.t. x,
often to keep δ imperceptible. Optimizing this objective re-
sults in adversarial examples capable of fooling the white-

box model into predicting yproxy with high confidence. We
hypothesize that by pushing x+δ into a high probability re-
gion of yproxy in the whitebox, these decision-based attacks
may in-turn cause the blackbox to regard x+ δ as ytgt.

Feature-space Attack. As the name suggests, feature
space methods compute adversarial noise using the interme-
diate feature information of the whitebox [13, 14]. Rather
than optimizing to explicitly cross decision boundaries,
these methods make the adversarial examples “look like”
the target class (or in our case yproxy) in feature space. In
this work, we use the multi-layer Feature Distribution At-
tack (FDA) [14] as our representative feature space method.
For setup, we first train the necessary auxiliary feature dis-
tribution models for each proxy class at a specified set of
whitebox model layers L = {`1, . . . , `N}. Note, the class
c, layer ` auxiliary model inputs the whitebox’s layer ` fea-
ture map f`(x), and outputs the probability that it is from
an input of class c (i.e., it outputs p(y = c|f`(x))).

Using the trained auxiliary models, the FDA attack ob-
jective function can then be defined as

max
δ∈S(x;ε)

LFDA(f, x, yproxy, δ,L, η), (2)

where

LFDA(f, x, y, δ,L, η) =
1

|L|
∑
`∈L

p(y|f`(x+ δ)) + η
‖f`(x+ δ)− f`(x)‖2

‖f`(x)‖2
.

(3)

By maximizing LFDA, the adversarial noise: (1) maxi-
mizes the likelihood that intermediate features from across
the whitebox’s feature hierarchy belong to the proxy class;
and (2) enforces that the perturbed image’s feature map is
significantly different from the clean image’s feature map,
as measured by a normalized L2 distance.

Our intuition for why this method has promise stems
from the discussed potential overlap of features in the
whitebox and blackbox data distributions. Particularly, if
there exists strong (target, proxy) relationships in the class
correspondence matrix, we posit that this is clear evidence
that the blackbox model has learned features that appear
in the whitebox data distribution. Thus, the FDA attack is
well-phrased to manipulate any shared features that may ex-
ist between a given (target, proxy) class pair. Further, we
hypothesize that since the perturbation objective of FDA is
detached from the exact decision boundary structure of the
whitebox (which is irrelevant to the blackbox model any-
way), it may yield higher transferability because the opti-
mization is focused on the feature compositions.

4. Disjoint label space transfer environments
Since we are not executing transfers in standard bench-

mark settings, we carefully design novel test environments

43



Table 1: Disjoint ImageNet Subsets Test 1 and Test 2

DINS Test 1 DINS Test 2

A B A B

fish crab dog-hound house-cat
bird butterfly dog-terrier big-cat
lizard snake dog-spaniel lizard
spider beetle dog-retriever snake

dog-hound dog-terrier insect fish
dog-spaniel dog-retriever beetle bird
house-cat big-cat butterfly spider
insect fungus train small-vehicle
boat train instrument large-vehicle

small-vehicle large-vehicle boat computer
mustelids big-game turtle big-game
turtle monkey crab mustelids

drinkware clothing drinkware sports-ball
fruit sports-ball fruit clothing

instrument computer monkey fungus

to evaluate the efficacy and scalability of our attacks across
a spectrum of realistic settings. We consider three dis-
tinct “cross-distribution” transfer scenarios. The first two,
named Disjoint ImageNet Subsets (DINS) Test 1 and Test
2, are manually constructed by partitioning ImageNet [4]
into challenging subsets. The third scenario involves trans-
fers between ImageNet and Places365 [40] models.

DINS Test 1 and 2. To assemble the DINS Test 1 and
2 environments, we first establish 30 distinct super-classes
that are comprised of five individual ImageNet classes each.
For example, we create a bird class by aggregating the
ImageNet classes [ 10:brambling; 11:goldfinch; 12:house-
finch; 13:junco; 14:indigo-bunting ], and a big-cat class
by aggregating [ 286:cougar; 287:lynx; 289:snow-leopard;
290:jaguar; 292:tiger ]. The full list is shown in Appendix
A. The super-classes are then partitioned as shown in Ta-
ble 1 to create the two DINS environments. Each is com-
prised of non-overlapping 15-class “A” and “B” splits, to
be referred to as Test 1.A/B and Test 2.A/B. In our exper-
iments, the blackbox target models in each test are trained
on the “B” splits, while the attacker’s whitebox models are
trained on the “A” splits. To be clear, we only intend to
attack between “A” and “B” models under the same envi-
ronment, i.e., Test 1.A→Test 1.B and Test 2.A→Test 2.B.

We remark that the DINS tests are created to represent
different difficulty levels. DINS Test 1 illustrates an in-
tuitively more promising transfer case, because there are
some obvious conceptual overlaps between the classes in
Test 1.A and 1.B that may lead to natural (target, proxy)
relationships. For example, both contain the general con-
cepts of dogs, cats and vehicles. However, the challenge is
that both have different supports (i.e., underlying ImageNet
classes) for what makes up a dog, cat and vehicle. DINS
Test 2 represents an intuitively harder transfer environment,
where there is much less conceptual overlap between the
label spaces of the whitebox (Test 2.A) and blackbox (Test
2.B). Notice, all four of the dog sub-breeds are in Test 2.A,
while all of the cat and vehicle categories are in Test 2.B.
Here, it is much less obvious which Test 2.B classes can be

targeted with the available proxy classes in Test 2.A.
ImageNet to Places365. Our third transfer scenario is

principally created to evaluate the scalability of our attacks
to more complex environments. We consider a situation
where the attacker has whitebox access to ImageNet models
and wishes to create targeted attacks for Places365 black-
box models. The additional complexity in this experiment
comes from two primary sources. First, the sheer increase
in the number of classes in both the whitebox and black-
box label spaces: ImageNet has 1000 classes and Places365
has 365 classes. Second, there is generally a finer granu-
larity between the categories in both distributions. For ex-
ample, instead of classifying at the stratum of dogs, cats,
fish, etc. (as we do in the DINS tests), these more com-
plex models have to classify between highly nuanced object
sub-categories (e.g., there are over 110 dog breeds in Ima-
geNet). From an attacking perspective, such an increase in
complexity and granularity may make it more difficult to re-
liably target individual classes in the Places365 label space.
Finally, we note that the ImageNet and Places365 datasets
technically have about 10 classes worth of label space over-
lap, which represents a very small percentage of the union
of categories. However, we intend to transfer across both
overlapping and non-overlapping sectors of the label space.

5. Experiments
Our experiments are split into a few main sections. First,

we describe the setup and results of attacking in the DINS
Test 1 and 2 environments. We then perform an analysis
of source class impact, and show an extension of the trans-
fer attacks to an environment where limited queries to the
blackbox may be allowed. Finally, we discuss the results of
transferring in the ImageNet to Places365 environment.

5.1. Experimental setup
On the Test 1.B and Test 2.B splits, we train ResNet-

34 (RN34) [9], ResNet-152 (RN152) [9], DenseNet-169
(DN169) [10], VGG19bn [32], MobileNetv2 (MNv2) [31],
and ResNeXt-50 (RXT50) [37] models to be used as black-
boxes. We then train ResNet-50 (RN50) and DenseNet-121
(DN121) models on both Test 1.A and Test 2.A to act as
whiteboxes. A variety of blackbox architectures, includ-
ing ones that are not from the same architectural family as
the whitebox models, are purposely considered to produce
a quality estimate of transferability.

When optimizing the adversarial objectives, both TMIM
and FDA attacks use an L∞ ε = 16/255 noise constraint
and iterate for 10 perturbing iterations while including mo-
mentum [6, 35, 14]. We opt to use an ensemble variant of
each attack method, where adversarial noise is optimized
using both the RN50 and DN121 whiteboxes concurrently
[23]. Note, the FDA attack method involves a tuning step
to select which layers are included in the attacking layer set
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Figure 2: Class correspondence matrices for the DINS Test 1 (top row) and DINS Test 2 (bottom row) environments.

[14]. Critically, we tune the attack layers only using mod-
els trained on the A splits (i.e., RN50-Test1.A↔DN121-
Test1.A and RN50-Test2.A↔DN121-Test2.A). In this way,
no extra queries to the blackbox models are required for at-
tack hyper-parameter tuning.

Finally, to measure attack potency we consider two met-
rics: error-rate (error) and targeted-success-rate (tSuc). Be-
cause we enforce that all “clean” starting images are cor-
rectly classified by the target blackbox model, both error
and tSuc have values in [0, 1] (where numbers closer to one
indicate higher success). Specifically, error measures the
rate at which the blackbox model misclassifies the adver-
sarial examples, and tSuc is the rate at which the blackbox
model misclassifies the adversarial example as the specified
target class. Even though our attacks are primarily opti-
mized for tSuc, the rate of incidental errors can still be of in-
terest to an attacker, especially because very limited options
for un-targeted attacks exist in this threat model [27]. See
Appendix B for more details regarding experimental setup.

5.2. Measuring class correlations
Figure 2 shows the class correspondence matrices for the

DINS Test 1 and 2 environments. The top row of subplots
is the result of forward passing Test 1.A data through the
RN34, DN169, and VGG19bn Test1.B models. The bottom
row is the result of forward passing Test 2.A data through

the RN34, DN169 and VGG19bn Test2.B models. From
these matrices, our first observation is that in both envi-
ronments there exist many strong relationships between the
classes that an attacker can attempt to leverage. As dis-
cussed, we attribute this to a set of shared features between
the whitebox and blackbox data distributions [27, 19], as
well as the propensity of DNNs to over-generalize [28, 1].

Importantly, we observe the correspondences are largely
intuitive. For example, the dog, cat, and vehicle classes
from distributions A and B in Test 1 show significant align-
ment. Similarly, in Test 2, insect and beetle both cor-
relate with spider, while train and boat both align
with large-vehicle. We believe this intuitive align-
ment to be the result of multiple factors working together.
For one, there is undoubtedly some amount of shared “low-
frequency” features between corresponding classes (e.g.,
both beetle and spider exhibit arthropodal features
such as exoskeletons and thin jointed appendages). In ad-
dition, highly correlated classes may share similar “high-
frequency” textures that the blackbox model is respon-
sive to (e.g., lizard and snake have similar scaled
patterns/textures on their skin). Interestingly, it has been
shown that DNNs may even prioritize the learning of tex-
tures [16, 7, 34], meaning the impact of any shared “high-
frequency” features may be especially significant. A pos-
itive consequence of these intuitive alignments is that an
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Table 2: Transfers in the DINS Test 1 environment (notation = error / tSuc)

Blackbox Models (Test 1.B)

Target (Test 1.B) Proxy (Test 1.A) Attack RN34 RN152 DN169 VGG19bn MNv2 RXT50 avg.

large-vehicle small-vehicle
TMIM 25.3 / 4.3 21.1 / 3.5 25.6 / 7.1 26.0 / 6.9 30.5 / 7.3 29.5 / 8.1 26.3 / 6.2
FDA 74.5 / 62.5 65.7 / 48.8 87.1 / 83.4 82.1 / 76.5 74.5 / 64.2 70.7 / 56.6 75.8 / 65.3

snake lizard
TMIM 30.5 / 11.5 26.0 / 10.7 30.8 / 12.7 32.7 / 9.9 36.7 / 14.9 32.7 / 14.1 31.6 / 12.3
FDA 63.7 / 52.2 64.9 / 56.0 79.0 / 70.6 77.3 / 47.7 68.8 / 55.8 65.1 / 56.5 69.8 / 56.5

dog-any dog-spaniel
TMIM 23.0 / 9.0 22.7 / 10.5 31.3 / 20.5 31.9 / 18.9 29.7 / 13.4 26.9 / 10.5 27.6 / 13.8
FDA 71.8 / 64.2 59.8 / 51.9 85.0 / 80.6 89.2 / 84.7 79.9 / 75.3 66.9 / 58.3 75.4 / 69.2

big-cat house-cat
TMIM 29.9 / 13.1 23.1 / 7.6 29.5 / 12.5 33.2 / 13.6 33.7 / 10.7 29.5 / 10.1 29.8 / 11.3
FDA 74.9 / 59.4 63.1 / 46.0 82.4 / 66.3 83.2 / 55.4 75.2 / 51.9 65.6 / 45.4 74.1 / 54.1

beetle insect
TMIM 28.5 / 10.2 26.9 / 9.2 30.2 / 9.5 30.0 / 6.9 31.3 / 4.7 30.5 / 8.3 29.6 / 8.1
FDA 66.3 / 41.9 62.6 / 40.1 76.6 / 35.2 75.1 / 28.3 65.1 / 22.1 62.5 / 24.7 68.0 / 32.0

beetle spider
TMIM 22.6 / 3.5 20.2 / 2.5 22.1 / 2.9 26.5 / 1.7 28.7 / 1.7 26.7 / 2.6 24.5 / 2.5
FDA 44.6 / 9.8 36.6 / 3.9 51.4 / 7.2 55.4 / 3.5 46.9 / 3.5 40.7 / 6.4 45.9 / 5.7

large-vehicle boat
TMIM 25.2 / 0.6 19.8 / 0.5 23.1 / 0.7 26.0 / 1.6 29.1 / 1.7 27.9 / 1.2 25.2 / 1.1
FDA 62.1 / 0.9 48.4 / 1.1 64.8 / 0.9 62.5 / 6.6 58.2 / 2.2 63.7 / 0.7 59.9 / 2.1

crab fish
TMIM 24.3 / 4.9 22.8 / 6.0 24.8 / 7.5 27.2 / 4.9 28.0 / 6.2 28.1 / 5.4 25.9 / 5.8
FDA 54.9 / 20.2 50.2 / 13.9 71.7 / 34.5 75.2 / 38.7 60.6 / 21.6 55.3 / 21.0 61.3 / 25.0

monkey mustelids
TMIM 24.0 / 4.4 19.8 / 3.2 25.0 / 6.0 26.2 / 3.7 28.8 / 6.0 26.0 / 3.5 25.0 / 4.5
FDA 60.1 / 17.7 52.4 / 10.1 69.5 / 11.0 73.4 / 21.4 68.3 / 13.8 57.0 / 7.9 63.4 / 13.7

clothing instrument
TMIM 25.4 / 9.1 19.0 / 5.1 23.9 / 7.0 26.1 / 10.6 28.6 / 9.3 25.8 / 6.7 24.8 / 8.0
FDA 40.8 / 12.5 33.3 / 9.3 44.4 / 6.7 46.0 / 8.9 47.4 / 11.1 43.3 / 5.1 42.5 / 8.9

crab turtle
TMIM 27.9 / 5.3 23.4 / 6.8 28.0 / 8.0 29.8 / 7.2 31.3 / 6.7 29.1 / 5.4 28.2 / 6.6
FDA 61.3 / 10.8 49.4 / 17.6 70.3 / 36.3 76.0 / 49.1 58.8 / 19.6 58.2 / 17.2 62.3 / 25.1

attentive attacker may be able to successfully guess corre-
spondences, even without probing the blackbox.

Another key observation from Figure 2 is that the pat-
terns of class correspondences are predominantly a function
of the data distributions, and are relatively agnostic to the
exact blackbox architecture. Observe that across the three
sub-plots in either row of Figure 2, the patterns of corre-
spondences remain consistent. From an attackers prospec-
tive, this means that once the class-relationships between
the whitebox and blackbox datasets are known, they would
not have to be recomputed if/when the blackbox model ar-
chitecture changes.

5.3. DINS Test 1 & 2 attack results
DINS Test 1. Table 2 shows the transfer results in the

Test 1 environment for the top eleven (target, proxy) rela-
tionships (as observed in the VGG19-Test1.B class corre-
spondence matrix of Figure 2). For each (target, proxy) pair,
we show the results of attacking with the TMIM and FDA
algorithms across the six blackbox models. Note, we make
a compromise regarding attacks that target the dog classes.
From the class correspondences, both dog classes in the
whitebox label space have high relation to both dog classes
in the blackbox label space (not surprisingly). So, rather
than selecting an individual dog to target, we configure the
attack so that if the adversarial example causes the black-
box to output either dog-terrier or dog-retriever
(i.e., dog-any) it is considered a success. We believe this to
be a reasonable trade-off for an adversary, as either way, the
attack is targeting the concept of a dog.

Our first observation is that across all (target, proxy)
pairs, the FDA algorithm considerably outperforms TMIM
in both error and tSuc. This follows our earlier intuition that

attacking in feature space may be more productive than at-
tacking at the output layer of the whitebox in this disjoint
label space setting. In 7 of the 11 scenarios (as shown in
bold), FDA achieves non-trivial average targeted transfer
rates above 25%; and in 4 of these 7, the targeted transfer
rates are above 50%. The top two (target, proxy) pairs on
average are: (dog-any, dog-spaniel) at 75.4%/69.2%
error/tSuc, and (large-vehicle, small-vehicle)
at 75.8%/65.3% error/tSuc. By comparison, some of the
highest tSuc rates in standard ImageNet settings (where
there is complete label space overlap) are about 50% [14].
As such, achieving comparable transfer rates between mod-
els with disjoint label spaces is a notable result.

Next, we remark that even though all 11 of the tested (tar-
get, proxy) relationships have strong class correspondences,
not all of them reliably produce targeted adversarial exam-
ples. Specifically, 4 of the 11 FDA-based transfers achieve
< 25% average tSuc, three of which are below 10%. This
finding leads to the conclusion that high class correspon-
dence is not a sufficient condition for high targeted attack
transferability. However, we posit that high correspondence
is necessary for reliable targeted transfer within our attack
scheme (e.g., there is no reason to expect high tSuc in the
(big-game, bird) scenario because the relationship be-
tween these classes is extremely weak). With that said, even
though a pair may have low tSuc, the induced error rate of
the attack can still be quite high. In 9 of the 11 transfers, the
average error rate using FDA is near or above 60%.

DINS Test 2. Table 3 shows results of attacking in
the Test 2 environment for the top ten (target, proxy)
relationships (as observed in the VGG19-Test2.B class-
correspondence matrix of Figure 2). Here, we simply show
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Table 3: DINS Test 2 transfers (notation = error / tSuc)

Target (Test 2.B) Proxy (Test 2.A) TMIM-avg. FDA-avg.

large-vehicle train 29.5 / 8.1 60.8 / 44.8
spider beetle 26.4 / 5.0 50.7 / 27.8

large-vehicle boat 27.5 / 3.0 48.0 / 6.3
spider insect 28.2 / 7.0 55.7 / 44.4
fungus fruit 25.5 / 2.2 51.7 / 5.6

mustelids monkey 27.3 / 8.9 58.9 / 24.3
house-cat dog-spaniel 26.0 / 5.1 59.7 / 22.5
clothing instrument 27.2 / 8.5 43.8 / 8.2
fungus crab 29.4 / 2.5 55.7 / 8.8

big-game dog-retriever 24.3 / 1.5 59.8 / 18.4

the average error/tSuc for each (target, proxy) pair over
the six blackbox models (see Appendix C for the full ta-
ble). Many of the findings from Test 1 carry over to Test 2,
starting with the observation that FDA consistently outper-
forms TMIM as the adversarial noise generation algorithm.
In 6 of the 10 (target, proxy) pairs tested, FDA achieves
non-trivial targeted transfer rates near or above 20%. The
top transfers on average are: (large-vehicle, train)
at 60.8%/44.8% error/tSuc, and (spider, insect) at
55.7%/44.4% error/tSuc. Even in the scenarios with low
targeted success, the error rates are still around 50%, indi-
cating some amount of attack potency in all settings.

One intuitive takeaway when comparing results from
DINS Test 1 and Test 2 is that the success rates in Test 2
are generally lower, especially among the top performing
(target, proxy) pairs. We believe this is a natural conse-
quence of the whitebox and blackbox data distributions in
Test 2 having considerably less conceptual overlap (as dis-
cussed in Section 4). From our attacking perspective, such
a decrease in conceptual overlap likely results in a smaller
intersection between the feature sets of the whitebox and
blackbox distributions for the attacks to exploit. Neverthe-
less, from these results we can still conclude that targeted
transfer between models with no label space overlap is def-
initely possible, and in some cases highly effective!

5.4. Analysis: Impact of source class
The transfer results in Tables 2 and 3 focus on the con-

sequences of the (target, proxy) choice, and do not account
for other properties of the data such as the class of the clean
starting image. The displayed numbers are computed as av-
erages over clean images from all blackbox categories be-
sides the target class. In this section, we investigate the im-
pact of the clean image’s class on attack transferability in
an effort to further analyze conditions of high transfer.

Figure 3 shows the targeted success rates of the (snake,
lizard) and (beetle, insect) Test 1 transfers as a
function of the clean data class (results averaged over the
six Test 1 blackbox models). It is clear that attack success
rates are in-fact sensitive to this information and that the
patterns of class influences are not consistent across differ-
ent (target, proxy) pairs (e.g., monkey is not universally
the best clean data class for transfers). Such behavior is

Figure 3: Effect of clean data class on targeted success.

Figure 4: Targeted attack success when integrated with the
RGF query attack method.

likely the result of unforeseen interactions between the fea-
tures of the clean data and the features of the target class.
Perhaps most interestingly, notice the range of tSuc values
across the classes. In the (snake, lizard) case, between
monkey (tSuc=84%) and clothing (tSuc=32%) there is
a 52% range in tSuc. Similarly, in the (beetle, insect)
case, the range between dog-terrier (tSuc=51%) and
fungus (tSuc=16%) is 35%. Given these strong trends,
this analysis also provides one method an attacker can use
to adapt their attacks, to effectively maximize the chances
of attack success in a given environment.

5.5. Integration with query attacks
While pure transfer attacks have the advantage of not

querying the target model during attack generation, their
success can be limited by the compatibility of the white-
box and blackbox models. Although we have achieved high
tSuc in many cases, it is difficult to further improve these
results in a transfer-only setting. Here, we show that by in-
corporating queries into our transfer attacks, we can reliably
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Table 4: ImageNet to Places365 transfers (error / tSuc)

Target (Places365) Proxy (ImageNet) TMIM-avg. FDA-avg.

83:Carousel 476:Carousel 63.5 / 4.9 93.7 / 63.0
154:Fountain 562:Fountain 60.2 / 8.9 91.0 / 71.4

40:Barn 425:Barn 58.1 / 2.0 85.1 / 20.9
300:ShoeShop 788:ShoeShop 58.0 / 3.5 94.8 / 80.8
59:Boathouse 449:Boathouse 55.3 / 1.0 86.0 / 30.6
350:Volcano 980:Volcano 54.1 / 0.7 79.5 / 32.2

72:ButcherShop 467:ButcherShop 59.3 / 1.5 90.1 / 21.3
60:Bookstore 454:Bookshop 56.9 / 2.4 90.4 / 29.6

342:OceanDeep 973:CoralReef 58.2 / 3.0 86.2 / 37.3
76:Campsite 672:MountainTent 56.0 / 2.0 88.9 / 59.5

6:AmusementArcade 800:Slot 62.7 / 5.1 92.7 / 34.9
214:Lighthouse 437:Beacon 54.1 / 0.5 76.3 / 12.7
147:FloristShop 985:Daisy 55.8 / 0.1 81.4 / 13.1

278:RailroadTrack 565:FreightCar 58.1 / 1.9 80.4 / 28.7
90:Church 406:Altar 62.3 / 0.6 93.4 / 14.1

196:JailCell 743:Prison 53.4 / 1.9 77.2 / 19.5
180:HotSpring 974:Geyser 53.2 / 0.1 83.7 / 6.6
51:Bedchamber 564:FourPoster 63.7 / 10.2 92.0 / 55.3
268:Playground 843:Swing 58.9 / 1.8 75.6 / 12.9

42:BaseballField 981:Ballplayer 54.2 / 0.1 76.6 / 22.0

increase tSuc while requiring significantly less queries than
an exclusively query-based attack [3, 12, 33]. To integrate
the two techniques, we first perturb for 10 iterations using
only the transfer attack. We then switch to estimating the
gradient of the blackbox directly using the Random Gradi-
ent Free (RGF) [3] method and perturb until attack success
(or a maximum of 5000 queries). In this way, the trans-
fer attacks provide an initial adversarial direction that gets
fine-tuned/updated with the RGF algorithm.

Figure 4 shows the targeted success rates versus query
counts (q) for the (snake, lizard) and (big-cat,
house-cat) scenarios from DINS Test 1, and the
(spider, insect) and (mustelids, monkey) scenar-
ios from Test 2 (as averaged over the six blackbox models).
The RGF lines represent the query-only baseline, and the
TMIM+RGF and FDA+RGF lines represent using TMIM
and FDA to warm-start the adversarial noise, respectively.
We first observe that both TMIM+RGF and FDA+RGF
consistently outperform RGF alone across query counts,
with FDA+RGF being the top performer. This indicates
that both transfer attacks can act as powerful prior direc-
tions when used with RGF. Interestingly, we also observe
TMIM+RGF and FDA+RGF rapidly become more potent
in the low query regime of q ≤ 1000. For example, in the
(mustelids, monkey) case, the targeted success rates at
q = [0, 500, 1000] are: [9%, 31%, 55%] for TMIM+RGF;
[24%, 61%, 81%] for FDA+RGF; and only [0%, 12%, 30%]
for RGF. Lastly, it is worth noting that in all four scenarios
FDA+RGF nearly reaches or exceeds 80% targeted success
at q = 1000. See Appendix D for more.

5.6. ImageNet to Places365 transfers
Our final experiment is to evaluate transfers in the more

complex ImageNet to Places365 setting, as described in
Section 4. The experimental setup is nearly identical to
Section 5.1. For the Places365 blackbox models, we use

pre-trained Wide-RN18 [38], RN50 and DN161 from the
code repository of [40]. For the ImageNet whitebox mod-
els, we use an ensemble of RN50, DN121 and VGG16bn
from [29]. Importantly, all of the hyperparameter tuning for
the TMIM and FDA attacks are done using ImageNet mod-
els only, so no queries to the blackbox models are required
for attack tuning. Also, all of the clean starting images we
attack are correctly classified by the Places365 models, and
we continue to use the L∞ ε = 16/255 noise constraint.

First, the class correspondence matrix is constructed by
forward passing the ImageNet validation set through the
DN169-Places365 model and collecting the predictions. We
observe many promising (target, proxy) pairs and select
twenty to perform experiments with. Of the twenty, eight
are classes that fall within the label space overlap (e.g.,
83:Carousel of Places365 and 476:Carousel of Im-
ageNet) and twelve are non-overlapping classes that have
strong conceptual similarities (e.g., 342:OceanDeep of
Places365 and 973:CoralReef of ImageNet). Table 4
shows the TMIM and FDA transfer rates for the twenty (tar-
get, proxy) pairs as averaged over the three blackbox mod-
els (see Appendix E for per-model statistics). Note, the top
section are transfers between overlapping classes and the
bottom section are the non-overlapping transfers.

Consistent with previous findings, FDA is a much more
powerful noise generating algorithm than TMIM, and is ca-
pable of inducing high error and targeted success rates for
both shared and non-overlapping classes. In 9 of the 20
(target, proxy) pairs, FDA obtains more than 30% tSuc, in-
cluding 5 cases that achieve over 55%. The top-performing
(target, proxy) pair amongst the overlapping classes is
(300:ShoeShop, 788:ShoeShop) with 94.8% error /
80.8% tSuc; while the top pair amongst the non-overlapping
classes is (76:Campsite, 672:MountainTent) with
88.9% error / 59.5% tSuc. It is also worth noting that in 8 of
the 20 transfers, FDA-based attacks achieve over 90% error,
while the “worst” error rate amongst all twenty is still 75%.
This is especially impressive, as prior work could only fool
these models via query-attacks if the adversary did not have
access to the Places365 dataset. Overall, these results show
that transfers between large-scale DNN models trained on
distinct data distributions can be very effective.

6. Conclusion
We describe a first-of-its-kind targeted transfer attack

methodology for a new blackbox threat model where the
source and target DNNs have disjoint label spaces. Through
evaluation in difficult environments, we show that targeted
attacks can be potent even when the source and target mod-
els have highly complex data distributions with minimal
conceptual overlap amongst categories. Finally, we hope
that this work inspires further research in challenging black-
box threat models that have been neglected in prior studies.
Acknowledgements: AFRL FA8750-18-2-0057 and NSF-2140247.
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