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Abstract

Adversarial Robustness is a growing field that evidences
the brittleness of neural networks. Although the literature
on adversarial robustness is vast, a dimension is missing in
these studies: assessing how severe the mistakes are. We
call this notion ”Adversarial Severity” since it quantifies
the downstream impact of adversarial corruptions by com-
puting the semantic error between the misclassification and
the proper label. We propose to study the effects of adver-
sarial noise by measuring the Robustness and Severity into
a large-scale dataset: iNaturalist-H. Our contributions are:
(i) we introduce novel Hierarchical Attacks that harness
the rich structured space of labels to create adversarial ex-
amples. (ii) These attacks allow us to benchmark the Ad-
versarial Robustness and Severity of classification models.
(iii) We enhance the traditional adversarial training with
a simple yet effective Hierarchical Curriculum Training
to learn these nodes gradually within the hierarchical tree.
We perform extensive experiments showing that hierarchi-
cal defenses allow deep models to boost the adversarial Ro-
bustness by 1.85% and reduce the severity of all attacks by
0.17, on average.

1. Introduction

Widely-known adversarial attacks such as FSGM [16],
CW [8], Projected Gradient Descent (PGD) [24] or AutoAt-
tack [10], share a common objective: they aim at decreasing
accuracy. While these attacks are effective and practical,
they ignore the rich semantic structure of the label space.
We hypothesize that disregarding these semantic relations
amounts to discarding valuable knowledge that states the
degree of relation between classes, and we aim at exploring
the notion of severity of adversarial attacks. The severity
quantifies the semantic error of a misclassification induced
by an adversary. The hierarchical distance models this error

for a label space formed from a hierarchical tree. The adver-
sarial severity extends the traditional top-1 accuracy over a
new dimension. Accordingly, to deploy machine learning
algorithms in real-life scenarios, we require them to be pro-
tected against adversaries that may exploit the structure of
the semantic label space. In particular, models need de-
fenses against attacks capable of radically changing their
output. Many cases require to cover a complete range of
outputs, where some of them have dissimilar connotations.
Take as an example action classification for video surveil-
lance. Changing a prediction “playing” to “running” is not
severe because of its close semantics. Nonetheless, altering
“robbing” to “running” may lead to severe consequences.

This phenomenon is no stranger to DL methods. Since
the introduction of DL models, utilizing the hierarchical la-
bels as an additional source of information has been ignored
to some extent. Similar to adversarial attacks, these archi-
tectures focus exclusively on improving accuracy. Recently,
Bertinetto et al. [6] studied how modern progress in DL has
not translated into improvements in terms of hierarchical
error, despite providing significant gains in accuracy.

In this paper, we quantify the semantic errors in which
DL models incur when under attack. This study allows us
to identify how current attacks and defenses are insufficient
to assess the adversarial severity. Thus, we propose: (i) a
new set of hierarchy-aware attacks. (ii) a new benchmark to
assess the adversarial robustness and severity. (iii) a defense
to diminish the severity and the precision of attacks.

We note that the semantic structure of the label space
can guide the design of adversarial attacks. Thus, we study
hierarchically-labeled datasets and propose a new set of
hierarchy-aware attacks. In contrast to traditional adver-
sarial attacks, the target of these hierarchical attacks is in-
put misclassification and large semantic errors. The suite
is composed of three novel attacks: Lower Hierarchical At-
tack (LHA), Greater Hierarchical Attack (GHA) and Node-
based Hierarchical attack (NHA). Figure 1 illustrates how
traditional attacks ignore the rich structure of the label space
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Figure 1: Hierarchical Attacks. In contrast to standard adversarial attacks in (a), we generate adversarial perturbations by
considering the hierarchical distance between labels: (b) LHA generates the examples by taking into account only the classes
with a hierarchical distance lower or equal than h. (c) GHA uses those that are higher or equal than h. (d) NHA considers the
father nodes with a height level of [ as the classification nodes to generate the adversaries. We utilize h = 2 for the overview

of all attacks.

(Figure 1a) and how our attacks exploit this information to
induce semantic errors (Figures 1b-d). Our attacks employ
the hierarchical distance to craft adversaries. Firstly, LHA
creates distortions with low hierarchical distances. Sec-
ondly, GHA attacks the target image to fool the target net-
work with highly unalike semantics. Finally, NHA crafts
adversarial images aiming at changing the parent node.

In order to assess adversarial severity, we develop a com-
prehensive benchmark built upon the work of [6]. We use
our proposed attacks to diagnose the brittleness of models
and the stress under adversarial attacks. The environment
given by iNaturalist-H is an appropriate testbed for ana-
lyzing both effects, as its rich label space originates from
genetics-based phylogenetic trees. So, we measure the Ac-
curacy and the Average Mistake under the influence of our
attacks to quantify the adversarial robustness and severity.

To mitigate adversarial severity, we hypothesize that the
inclusion of the hierarchy into adversarial training reduces
the severity of adversarial attacks. Thus, our approach takes
inspiration from curriculum-based human learning [5, 23].
Intuitively, a student’s learning starts from basic and coarse
concepts and goes towards finer and specialized ones. This
mechanism allows the student to easily learn finer concepts
as the coarse notions may be a strong prior. Therefore,
we exploit the fact that coarse/fine concepts are naturally
defined when an underlying hierarchical structure encom-
passes the classes. Consequently, we propose a Curriculum
for Hierarchical Adversarial Training (CHAT) to gradually

learn all nodes at every level in the class hierarchy. Our
experiments show that CHAT improves robustness and di-
minishes the severity against adversaries.

We summarize our contributions as follows:

e We introduce a new set of Hierarchy-aware Attacks
that optimize adversarial examples by aiming at both
diminishing the accuracy and increasing hierarchical
errors.

* We provide the first assessment on adversarial severity
on a highly challenging, large-scale, long-tailed, and
hierarchically-structured benchmark: iNaturalist-H.

e We show how employing CHAT to gradually learn
classes from a tree results in enhanced defenses against
hierarchical adversarial attacks.

Our code and models are available at https://
github.com/BCV-Uniandes/AdvSeverity.

2. Related Work

Robustness Assessments. As new attacks are released,
new defenses are created and vice-versa, generating an arms
race. However, several works have demonstrated that reli-
ably assessing adversarial robustness is an elusive task [3].
Thus, recent works have tried to provide either formal certi-
fications of robustness [28, 9] or reliable benchmarks for
empirical assessment of adversarial robustness [13, 10].
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Despite the sophistication of these benchmarks, we observe
that they are only concerned with evaluating whether at-
tacks can induce error in network predictions. Thus, these
benchmarks disregard how severe such errors are. We fill
this gap in the literature by introducing novel hierarchy-
aware adversarial attacks. Then, we conduct a large-scale
evaluation of the severity of errors induced by such attacks
in the challenging iNaturalist-H [6, 21] dataset.

Curriculum in Deep Learning. A plethora of stud-
ies show the benefits of using a learning curriculum during
training [33, 5, 22]. Hacohen and Weinshall [18] show that
progressive learning from easy to hard instances enhances
the performance when compared with the standard training.
Graves et al. [17] create an automatic curriculum learning
to improve convergence time. Weinshall and Amir [37] pro-
vide a theoretical perspective on curriculum learning. Duan
et al. [14] explore a curriculum for 3D-shape representa-
tion learning. Wug Oh et al. [26] use a curriculum on the
task of video object segmentation to learn object appearance
over long time frames. We propose an adversarial training
curriculum that learns concepts from coarse to fine on the
hierarchical tree.

Hierarchical Classification. Despite the availability
of datasets with hierarchical information [21, 25, 12, 31],
the computer vision community has not yet standardized
the usage of a rich structured space of labels for either
training or evaluation. Recently, Bertinetto et al. [6] con-
ducted the first large-scale evaluation of the Accuracy and
the Average Mistakes of modern methods by using the tax-
onomic trees of iNaturalist [21] and tieredImageNet [31].
In [6], Hierarchical-based approaches are split into three
groups: Label-embedding methods [4, 15, 32, 20, 38], hier-
archical losses [6, 7, 11, 35] and hierarchical architectures
[30, 1, 39]. We refer the interested reader to [6] for a thor-
ough review on hierarchical classification. We draw inspi-
ration from hierarchical architectures to introduce a hier-
archical curriculum during training to enhance adversarial
robustness and reduce the induced semantic error.

3. Methods
3.1. Notation

A hierarchical tree with height H is a set of groups of
nodes {Yp,Y1,...,Yy_1} and their corresponding transi-
tion functions Cj, /. Each set Y, = {1,2,...,n,} con-
tains all nodes at height h, e.g. Y} is the set of leaf nodes
and Yz is the root. Additionally, the transition function
Ch,ny maps any label in Y3, into a subset of nodes in Y}/,
representing the label’s offspring when A > h'. Formally,
Chp = Yy — P(Y), where P(-) is the powerset of its
input. These transition operations have the following prop-
erties:

L. Usey, Chw (i) = Yi

2. Ch,h’ (’L) £ O,VieYy,
3. C}L7h/(i) N Oh,h/(j) =g,Vi,j €Yy, i £jifh> h'.

Let be a dataset with images and their corresponding hi-
erarchical labels from the tree. Let a neural network be
a composition between a backbone g that extract features
representation of images and a linear classifier fyy,;, where
W € R™>™ and b € R™ are the weights and biases of
f, respectively. m is the feature dimension of the represen-
tation vector, and ng is the number of leaf classes. Define
W; € RY™ to be the i-th row of W and b; € R to be the
i-th component of the bias vector.

To measure distances within the topology of a tree, we
use the hierarchical distance dy. Hence, the height of the
least common ancestor between nodes defines this metric.
So, we use d g to measure a semantic difference between an
instance’s prediction and the corresponding ground-truth.
Throughout the rest of the manuscript, we refer as mistake
as the hierarchical distance between two nodes.

3.2. Hierarchical Attacks

In order to assess the severity of adversarial attacks, we
propose novel hierarchy-aware adversaries that perturb im-
ages aiming at reducing standard accuracy and increasing
the severity of hierarchical mistakes. Figure 1 provides a
graphical illustration of our new attacks: Lower Hierar-
chical Attack, Greater Hierarchical Attack and Node-based
Hierarchical Attack. As we intend to increase hierarchical
mistakes, all our attacks aim to extract and harm the target
image by exploiting the rich structure of the label’s space
hierarchy.

Lower and Greater Hierarchical Attacks at height h.
These attacks aim at perturbing the target image by creat-
ing distortions with a criterion based on the hierarchical
distance h between the target leaf label and the other leaf
nodes. Both attacks operate similarly: to choose the adver-
sary classes depending on the severity of the attack, given
by h. Please refer to Figure 1b and 1c¢ for an illustration of
the intuition behind our proposed attacks.

On the one hand, the most semantically closed classes to
a target label are those whose similarity within the tree is at
most h in the hierarchical distance. Accordingly, LHA cre-
ates the adversarial examples targeting classes whose dis-
tance to the original class is less than or equal to h. Thus,
for an image «x and its leaf label y, LHA optimizes the loss
(Equation (1)):

Lrmaan(w,y) =
eWyg(x)“’by (D)
eWig(z)+b;

—log
ZjEYU st. dp (y,j)<h

On the other hand, GHA @h aims at creating adversaries
that induce large mistakes (i.e. cause remarkable “confuse”
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of the network). Conversely to LHA, GHA uses informa-
tion from the classes with a hierarchical distance greater or
equal to h. Thus, GHA maximizes the loss (Equation (2)):

Leaaan(z,y) =
eWug()+by )
W;g(z)+b;

—lo
® Eje{keYo\dH(y,k)Zh or k=y} €

To ease the understanding of these losses, we point out
that the objective to minimize is similar for both attacks. On
Figure 1b and Ic, in essence, both attacks harms the purple
node -the label- by using as negative classes the red leaves.

Node-based Hierarchical Attacks. The NHA harms
the nodes directly with a height of h. Figure 1d exemplifies
our proposed attack. To compute the probability of classify-
ing a target image « as a node y with height h, we follow the
conditional probability theory. Thus, this probability equals
the sum of the probabilities of choosing any leaf class de-
rived from y. Therefore,

Ple(x) =y €Yy)=> Ple(x)=i€Yy) ()
i€Ch,0(y)

where ¢(z) = y is the action of classifying = as y and
P(e(x) = y € Yp) is the probability of classifying z as
y € Yy. As is standard, all state-of-the-art models use a
Softmax layer to compute the probability distribution of an
input image by using the corresponding logits. Therefore,
the probability of the neural network to classify x as class ¢
is:
eWi!](CE)+b'i

‘7:

“)
Hence, following Equation (3), the probability of classify-
ingzrasy €Yy is:

Wig(x)+b;
Ziech,u(y) e!9(®)
2221 eWig(z)+b;

®)

Pe(z) =y € Y,|W,b) =

To extract adversaries based on Equation (5), we com-
pute the cross-entropy loss. To speed up this operation, we
estimate the adversaries by attacking the cross-entropy on
Equation (6). This function computes the loss over the max-
imum logits within nodes of interest:

f/NHA@h(xay) = —log " L. ©)

where, L, = max;cc, ,(y) Wig(z) + b;. We base our de-
sign on the mathematical principle that, if L, is the logit
corresponding to node y € Y}, with straightforward alge-
braic manipulation we can obtain that

L, =log Zewié?(x)*bi . (7)

1€Ch,0(y)

It is widely known that the max function has a variety of
differentiable approximations. We recall one in particular:
max(ry,...,Tm) ~ log(e® + ... + €*m). Thus, we find
that L, ~ f/y. As a result, we attack an approximation of
the true cross-entropy function—Equation (6). In Figure 1d,
we exemplify the idea behind NHA. This attack extracts the
maximum logit over the leaf offspring of each node at the
target height. So, NHA harness these logits to create the
adversary.

3.3. Benchmarking Adversarial Severity

In order to conduct an assessment of both adversarial
robustness and severity, we compute two metrics that re-
flect these concepts. First, we compute the standard Robust
Accuracy. This measurement quantifies the worst-case en-
durance of a defense against adversarial examples. How-
ever, this metric does not provide information about the se-
mantic error the model incurred under the attack. Hence,
we also compute the Average Mistake [6]. So, we average
the hierarchical distance dg of all misclassified instances.
This metric quantifies the semantic dissimilarity between
the prediction and the ground-truth label, thus, addressing
the issue presented by only measuring accuracy.

Fundamentally, our attacks propose novel optimization
objectives. In practice, for optimizing such objectives, we
implement a PGD-based strategy. The standard PGD [24]
iteratively performs FSGM steps [16] to maximize the
Cross-Entropy Loss L between the prediction for an in-
stance x and its corresponding ground-truth label y to find
an adversarial example:

H xy + asign (Vg, (L(m(xt),y))), (8)

B (z,€)

Ti41 =

where m(-) = Softmaz(fw(g(-))), and the initial point
x¢ is perturbed with noise, namely xo = = + u, with u be-
ing sampled from the uniform random distribution U[—e, €],
« is the step per iteration and [ B (2,) is the projection
function over the set By__ (z, €), namely, the intersection set
between the e-ball with the ¢, norm around = and the set
[0,1]%#¢(*), We refer to an n-step PGD attack as PGDn.
Using PGD-optimization for our attacks amounts to replac-
ing the Loss L in Equation (8) with each of the losses in
Equations (1), (2) and (6). Analogously, we refer to the
n-step versions of these attacks as LHAn@h, GHAn@h
and NHAn@h. For all our evaluation experiments, we set
a = 1/255 and report the worst-case accuracy. Further-
more, we compute the adversaries for correctly-classified
instances.

Dataset: We construct our methodology on top of the
iNaturalist-H, created by [6]. This dataset is a partition
of the challenging iNaturalist 19 [21]. It is known by how
its class distribution follows a long-tail, resembling the im-
balance of the real world. This dataset covers a total of
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Figure 2: Overview of CHAT. Our hierarchical curriculum
has two steps: the warm up (upper Figure) and the end-to-
end training (bottom Figure). The warm up consist on trans-
ferring the weights and biases from the parent node to its
offspring. The second step consist on training the model’s
parameters, Wh=1 and b»~! in a end-to-end manner.
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1010 leaf classes dominated by an 8-level phylogenetic tree.
We perform all our ablation experiments on the validation
set and report the main results in Figure 3 on the test set.
We provide a detailed description of this dataset and useful
statistics on the Supplemental Material.

3.4. Curriculum for Hierarchical Adversarial
Training

In order to defend our model against accurate and se-
vere attacks, we propose CHAT: Curriculum for Hierarchi-
cal Adversarial Training. Inspired by human learning, we
create a curriculum-based training to learn all the nodes by
progressively increasing the difficulty of the task, i.e. iter-
atively deepening the current height h of tree to h — 1 at
each stage, until reaching & = 0. Our curriculum comprises
two iterative steps: the warm up and the end-to-end train-
ing. Figure 2 illustrates a stage on our curriculum training.
For the first step, consider /" and b” to be the weights and
biases of the current classifier at the h-th stage of the cur-
riculum. When updating the step from h to h — 1, the size
of the weights of f must change to account for the increase
in the number of classes. Thus, we initialize a new classifier
fwh—1 ph—1, with Wh=1 ¢ Rn-1Xm apd ph=1 ¢ R

C Clean PGD50
e|gm « Acc AM | Acc AM
416 6 3140 321 | 1233 3.20
418 6| v |328 3041336 3.06
6| 6 4 2487 344 | 7.13 344
6|8 4 |v |27.19 328 832 329
8| 6 6 19.65 376 | 431 3.71
8| 8 6|v 2329 349 607 3.49

Table 1: Clean and PGD50 performaces for the best
models. We compare the best models we extracted through
the grid search on the space of hyperparameters. C stands
for curriculum, m are the number of iterations per images
and « the step size. The results show that our proposed cur-
riculum greatly enhances the performance on all metrics by
using FAT.

Then, we provide a warm up for the weights 1/*~! and bias
b"~1 by transferring the parameters from each node j to all
its children. Finally, we discard the weights W and biases
b". Formally, for alli € C},, h—1(j) we apply:

W= ©)
h—1 h
bt = bl

Due to properties 1, 2 and 3 of the transition operations in
section 3.1, we ensure (i) that there is always at least an off-
spring at each step, (ii) that there are no child nodes that
descend from two parents, and (iii) we cover all nodes at
height h— 1. The second step consists of training all param-
eters of both the feature extractor and the linear classifier,
W"=1 and b"~!, in an end-to-end manner. The optimiza-
tion process uses the labels from the current stage, namely
Y}, —1, to minimize the cross-entropy loss. Furthermore, we
robustify the model on this step by replacing the training
with any adversarial learning method [36, 34, 24]. We it-
erate these stages until convergence at the leaf nodes. We
enforce the number of epochs at each stage is closely related
to the number of nodes at each level.

To train our models to be robust, we adopt an Adversarial
Training [24] inspired strategy. In particular, we follow the
computationally-efficient Free Adversarial Training (FAT)
technique [34], which exploits each forward-backward pass
to optimize both model parameters and the adversarial ex-
amples used for training. FAT has three hyper-parameters
of interest: the number of times each adversarial example is
replayed, m, the bound for the adversarial examples, €, and
the adversary optimization’s steps size, a.
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Figure 3: Hierarchical Attack Evaluation. We evaluate the performance of FAT on our hierarchical attacks with 50 iter-
ations at each target height on the test set. The inclusion of our curriculum boost all metrics for all levels compared to the
baseline. (a) LHA is the strongest accuracy-related attack among the proposed ones. It even surpasses the PGD when setting
the height i to 5 or 6. (b) The GHA enjoys a balanced between severity and accuracy. (c) The NHA is the most severe but

less successful attack among the set of hierarchical attacks.

4. Experiments

4.1. Curriculum-Enhanced Models against Hierar-
chical Attacks

Implementation Details. For all our experiments we
follow the experimental setup of [6]. We initialize a ResNet-
18 [19] from ImageNet-pretrained [12] weights and then
train the network for 200, 000 steps. We use the Adam op-
timizer [29] with $; = 0.9 and By = 0.999, learning rate
of 1075, no weight decay, and a mini batch-size of 256. We
fix the updates in curriculum stages to occur at 2%, 4%, 6%,
15%, 25% and 35% of the training iterations.

Model Selection. We assess the effects of our new
attacks against our CHAT-enhanced models. We se-
lected the models that provided the best robustness against
PGDS50 on the validation set for a fair comparison be-
tween the vanilla and CHAT-enhanced models. We ex-
plore the space of parameters m € {2,4,6,8} and o €
{1/255,2/255,4/255,6/255} for the standard and hierarchy-
enhanced models to search for the best-performing models
for all € € {4/255,6/255,8/255}. We report each model’s
hyperparameters and performance on the validation set in
Table 1. The results show that the proposed CHAT en-
hances all metrics on the clean and PGD50 settings by a
large margin. We underscore that all curriculum-enhanced
models were trained with a higher number of iterations m.
We suspect that a higher number of iterations per height
will increase even further the gap. Nonetheless, a com-
plete study on the curriculum aspect of the training is out
of the scope of this paper. Also, the step sizes of the models
are large in comparison to their perturbation budget. Wang
and Zhang [36] evidence that some models enjoy similar
robustness for larger step sizes and fewer iterations when
trained adversarially on the CIFAR dataset. Although we
are tackling a higher-dimensional dataset, we observe this

Metric ‘PGDS PGD10 PGD50 PGD100

Accuracy | 13.85 11.44 11.07 11.06
AM 3.25 3.25 3.25 3.25

Table 2: PGD iterations. We assess the number of itera-
tions under the same PGD attack for a vanilla ResNet-18
trained with Cross-Entropy. This experiment shows that
PGDS50 explores close results as the PGD100.

phenomenon too. FAT approximates a 1-step PGD training
routine. Thus, large step sizes may further enhance adver-
sarial robustness.

Once we choose all the best models, we quantify the ef-
fectiveness of our attacks on the testing set. Figure 3 re-
port the results for LHAS0@h, GHAS0@h and NHA50@h
in the test set. These results demonstrate that introducing
CHAT improves both the adversarial accuracy and sever-
ity metrics for all models. The results of LHA present an
average increase of 1.45% for the robust accuracy and an
average mistake decrease of 0.18. The GHA and NHA
present an average boost on the robust accuracy of 1.72%
and 1.91%, respectively. Furthermore, The average mis-
take metric decreases by 0.16 for GHA and NHA. We at-
tribute these gains to the curriculum’s semantic partition,
which demonstrates that semantically-coherent representa-
tion spaces enhance model robustness.

We further observe that the average mistake saturates at
heights greater than or equal to 4. In contrast, the accuracy
does not reach such a plateau. This event seems contra-
dictory to the result of Figure 4. Nonetheless, the average
mistake metric on this table considers both instances that
initially were erroneous and not perturbed and those whose
attack was successful.
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Clean PGDS0
Method | pce  AM | Ace AM
Standard | 29.64 325 | 11.07 3.5
Scratch | 34.02 3.04 | 11.90 3.05
CHAT (Ours) | 3411 2.98 | 1215 3.01

Table 3: Effects of CHAT on Adversarial Training. We
report the results of Clean and PGDS50 attack accuracy
(Acc) and Average Mistake (AM). Results in bold and italic
show the best and second best performances, respectively.

4.2. Ablation Studies

This section studies (i) the proposed defense mecha-
nism’s components and (ii) the effects of the hierarchical-
aware attacks. We perform all ablation experiments in the
validation set. From the side of the attacks, we first explore
the effect of the number of iterations for PGD and report our
results in Table 2. From these results, we conclude that hav-
ing 50 iterations is reasonable for a clear evaluation. Thus,
for all evaluations of adversarial robustness, we report num-
bers with respect to PGD50. We study two factors of inter-
est from the training side: the curriculum and the number of
iterations between curriculum stages. We train the ResNet-
18 with a perturbation budget of € = 4, a step size of a = 2
and m = 8 iterations to evaluate all our ablations.

Weight Transfer. At each stage of the curriculum, the
size of the linear classifier f increases, implying that new
weights are required. Here we assess the impact of em-
ploying the warm-up stage in contrast to (i) employing no
curriculum (Standard) and (ii) a naive initialization from
scratch at each curriculum stage (Scratch). We report the
results of this experiment in Table 3. Our results show
that the sole inclusion of hierarchical information into FAT
(“Scratch” vs. “Standard” in Table 3) greatly improves
accuracy and diminishes the error severity on both clean
and PGD50 settings. Moreover, employing our warm-up
strategy when changing between hierarchical levels boosts
performance metrics (“CHAT (Ours)” vs. “Scratch” in
Table 3). Since the Cross-Entropy ignores the relation-
ship between labels, semantically dissimilar classes may
be adjacent in the representation space. Although previous
works [7] show that Cross-Entropy is capable of learning
class hierarchies, our experiments suggest that employing
a curriculum encourages semantically-similar classes to lie
closer in representation space. We argue that this may be
because they have a disjoint hyperspace for coarse classes
as a prior, learned previously in the curriculum stages.

Step Spacing. The number of iterations used during pa-
rameter optimization can have large consequences on final
performance. Since a curriculum on a hierarchy implies a
changing number of classes at each stage, the number of

Curriculum Clean PGD50
urricuiu Acc AM | Ace AM
Linear 2639 297 | 1052 3.04
Ours 3411 298 | 12.15 3.01
Change | +7.72  +0.01 | +1.63 -0.03

Table 4: Effect of the Curriculum Steps. We test two dif-
ferent curriculums and report both accuracy (Acc) and Av-
erage Mistake (AM) for clean and PGD50 adversaries. We
test an exponential-like curriculum, labelled as ours, and a
linear one. Given the exponential growth of the number of
nodes at each level of the hierarchy tree, an exponential-like
curriculum fits perfectly. Bold changes show gains and in
italic losses.

optimization iterations run at each stage becomes an influ-
ential factor in performance. Thus, we assess the effect of
the amount of iterations to optimize each curriculum stage.
In particular, we test two spacing strategies between cur-
riculum stages: a naive linear spacing and our proposal,
an exponential-like spacing. We report our results on Ta-
ble 4. These results suggest that providing an exponentially-
increasing number of iterations for optimizing the classes at
each height of the tree leads to higher-performing and more
robust models. Combining these results with the evidence
from Table 3, we argue that inducing hierarchy-aware priors
is key to training more accurate and robust models. Using
a linear spacing, we enforce this phenomenon: the small
difference on Average Mistake values shows a semantically
disjoint space for the parent nodes. Nonetheless, the amount
iterations available on the last stage does not enable the con-
vergence into a local minimum for the leaf nodes.

On the Supplemental Material we present further ex-
perimentation with TRADES [40] and TRADES enhanced
with CHAT.

Hierarchical Attacks. Recall that our proposed
hierarchy-aware attacks have different objectives in mind,
all related to inducing mistakes of varying severities. In
order to visualize each effect, we plot on Figure 4 the trade-
off between (i) the Accuracy Drop (“Clean Accuracy” mi-
nus “Robust Accuracy”) against (ii) the average mistake of
those instances whose the attack was successful (“Flipped
Average Mistake”). The former dimension looks at how
powerful an attack is, and the latter reviews the severity of
the successful attack. The results show the intended effects
of each attack: The LHA and GHA produce inverse effects,
the former being semantically similar and stronger attacks,
and the latter more severe but less effective attacks. Note
that GHA@1 is equal to standard PGD. We expected the
standard PGD to outperform all other attacks in the accu-
racy metric because it has a broader range of information.
To our surprise, both LHA@6 and LHA @5 achieve slightly
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Figure 4: Hierarchical Attack effects. We plot the Dif-
ference between Clean and Robust Accuracy (“Accuracy
Drop”) against the flipped Average Mistake. The LHA gen-
erates semantically similar variances to each instance, while
GHA creates dissimilar noise. The NHA creates weak but
severe attacks as the curve is below the other ones. The
number on top of each point of the curve represents the
height of the hierarchical attack.

larger accuracy drops of 0.09 and 0.05 points, respectively.
We attribute this result to the existence of useless gradi-
ents that hinder the effectiveness of gradient-based attacks,
as observed by previous studies [2, 27]. Finally, the most
severe attack, in terms of semantic mistakes, is our newly
proposed NHA. On average, we find average mistakes of at
least 0.86 and up to 1.67 points compared to the standard
PGD50. Note that the proposed attacks are not as effective
at degrading accuracy compared to the standard PGD. Since
some images may contain semantic regions similar to some
classes, the PGD attack covers this spectrum of ranges. In
contrast, our proposed attacks have a reduced sight of these
classes. On the Supplemental Material we present further
experimentation mixing AutoAttack [10] with NHA.

4.3. Qualitative Results

We visualize the effects of the proposed attacks and PGD
adversaries on Figure 5. We used our CHAT model to com-
pute the adversaries. We set the height & to 3, and € = 8/255.
In addition, we visualize their corresponding perturbation
for all adversarial examples. In the first set of attacks, we
notice that PGD and LHA behave similarly, while the GHA
and NHA noises followed different directions, as noted by
the color of the noise. These results exemplify that the
PGD attack and the LHA use the same information to create
the adversaries for this instance, while the NHA and GHA
used different gradients to reach their local minimum. Con-
trastively, the PGD and LHA noises behave differently in
the second set of adversarial examples; the color of both

Original

PGD LHA GHA

Figure 5: Adversarial Examples. We visualize some ad-
versarial examples with ¢ = 8/255. From left to right, we
display the original image, PGD, LHA@3, GHA@3 and
NHA @3. Each image bellow the adversarial example is the
corresponding adversarial noise. All proposed attacks ex-
plore the semantics within the image in different manners.

noises differs. Nonetheless, the GHA and NHA create sim-
ilar perturbations. Finally, the last instance shows that all
attacks may similarly create adversaries. We set further vi-
sualizations of multiple adversarial examples under differ-
ent depths on the Supplemental Material.

5. Conclusions

In this paper, we unravel the rich semantic structure of
the label space to devise a new set of hierarchical attacks. To
assess their effects, we extend the classical evaluation met-
ric of the adversarial accuracy and explore a new dimension
of adversarial attacks: their severity. Consequently, we ex-
ploit iNaturalist-H, a large-scale dataset with a label space
generated from a taxonomic tree, and create a benchmark
with the aforementioned metrics. Furthermore, we propose
CHAT, a curriculum-enhanced training to improve the ro-
bustness against adversarial examples and the severity of the
damage by using all the hierarchical nodes of the taxonomic
tree. We hope that studying adversarial severity opens new
research directions in robustness.

68



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

Karim Ahmed, Mohammad Haris Baig, and Lorenzo Torre-
sani. Network of experts for large-scale image categoriza-
tion. 2016.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In Proceedings of the 35th
International Conference on Machine Learning.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In International Confer-
ence on Machine Learning (ICML), 2018.

B. Barz and J. Denzler. Hierarchy-based image embeddings
for semantic image retrieval. In IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 638—647,
2019.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Ja-
son Weston. Curriculum learning. In ICML 2009.

Luca Bertinetto, Romain Mueller, Konstantinos Tertikas,
Sina Samangooei, and Nicholas A. Lord. Making better mis-
takes: Leveraging class hierarchies with deep networks. In
The IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

A. Bilal, A. Jourabloo, M. Ye, X. Liu, and L. Ren.
Do convolutional neural networks learn class hierarchy?
IEEE Transactions on Visualization and Computer Graph-
ics, 24(1):152-162, 2018.

Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (SP), 2017.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified
adversarial robustness via randomized smoothing. In Pro-
ceedings of the International Conference on Machine Learn-
ing (ICML), 2019.

Francesco Croce and Matthias Hein.  Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International Conference on Ma-
chine Learning (ICML), 2020.

Jia Deng, Alexander C. Berg, Kai Li, and Li Fei-Fei. What
does classifying more than 10,000 image categories tell us?
In Computer Vision — ECCV 2010, pages 71-84, Berlin, Hei-
delberg, 2010. Springer Berlin Heidelberg.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A Large-Scale Hierarchical Image Database.
In Conference on Computer Vision and Pattern Recognition
(CVPR), 20009.

Y. Dong, Q. A. Fu, X. Yang, T. Pang, H. Su, Z. Xiao, and
J. Zhu. Benchmarking adversarial robustness on image clas-
sification. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 318-328, 2020.

Yueqi Duan, Haidong Zhu, He Wang, Li Yi, Ram Neva-
tia, and Leonidas J. Guibas. Curriculum deepsdf. In Euro-
pean Conference on Computer Vision (ECCV), pages 51-67,
Cham, 2020. Springer International Publishing.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio,
Jeff Dean, Marc' Aurelio Ranzato, and Tomas Mikolov. De-
vise: A deep visual-semantic embedding model. In Advances

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

[27]

(28]

69

in Neural Information Processing Systems (NeurlPS), vol-
ume 26. Curran Associates, Inc., 2013.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples, 2015.

Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi
Munos, and Koray Kavukcuoglu. Automated curriculum
learning for neural networks. In International Conference
on Machine Learning (ICML), volume 70 of Proceedings
of Machine Learning Research, pages 1311-1320, Interna-
tional Convention Centre, Sydney, Australia, 06-11 Aug
2017. PMLR.

Guy Hacohen and Daphna Weinshall. On the power of
curriculum learning in training deep networks. In Interna-
tional Conference on Machine Learning (ICML), volume 97
of Proceedings of Machine Learning Research, pages 2535—
2544. PMLR, 09-15 Jun 2019.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 770—
778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distill-
ing the knowledge in a neural network. In NeurlPS Deep
Learning and Representation Learning Workshop, 2015.
Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The inaturalist species classification and de-
tection dataset. In Computer Vision and Pattern Recognition
(CVPR), 2019.

Faisal Khan, Bilge Mutlu, and Jerry Zhu. How do humans
teach: On curriculum learning and teaching dimension. In
Advances in Neural Information Processing Systems, vol-
ume 24. Curran Associates, Inc., 2011.

Yong Jae Lee and Kristen Grauman. Learning the easy things
first: Self-paced visual category discovery. In Computer Vi-
sion and Pattern Recognition (CVPR), 2011.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International
Conference on Learning Representation (ICLR), 2017.
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. Distributed representations of words and
phrases and their compositionality. In Advances in Neural
Information Processing Systems, volume 26. Curran Asso-
ciates, Inc., 2013.

Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo
Kim. Video object segmentation using space-time memory
networks. In International Conference on Computer Vision
(ICCV), 2019.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, and Ananthram Swami Z. Berkay Celik. Practi-
cal black-box attacks against machine learning. In Asia Con-
ference on Computer and Communications Security (ASIA
CSS), 2017.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Cer-
tified defenses against adversarial examples. In International
Conference on Learning Representations, 2018.



[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the
convergence of adam and beyond. In International Confer-
ence on Learning Representations (ICLR), 2018.

Jopseph Redmon and Ali Farhadi. Yolo9000: better, faster,
stronger. In Computer Vision and Pattern Recognition
(CVPR), 2017.

Mengye Ren, Sachin Ravi, Eleni Triantafillou, Jake Snell,
Kevin Swersky, Josh B. Tenenbaum, Hugo Larochelle, and
Richard S. Zemel. Meta-learning for semi-supervised few-
shot classification. In International Conference on Learning
Representations, 2018.

Bernardino Romera-Paredes and Philip Torr. An embarrass-
ingly simple approach to zero-shot learning. In Proceedings
of the 32nd International Conference on Machine Learning,
pages 2152-2161. PMLR, 07-09 Jul 2015.

T. D. Sanger. Neural network learning control of robot ma-
nipulators using gradually increasing task difficulty. IEEE
Transactions on Robotics and Automation, 10(3):323-333,
1994.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi,
Zheng Xu, John Dickerson, Christoph Studer, Larry S Davis,
Gavin Taylor, and Tom Goldstein. Adversarial training for
free! In Advances in Neural Information Processing Sys-
tems (NeurIPS), volume 32. Curran Associates, Inc., 2019.
N. Verma, D. Mahajan, S. Sellamanickam, and V. Nair.
Learning hierarchical similarity metrics. In Computer Vision
and Pattern Recognition (CVPR), pages 2280-2287, 2012.
Jianyu Wang and Haichao Zhang. Bilateral adversarial train-
ing: Towards fast training of more robust models against
adversarial attacks. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), October
2019.

Daphna Weinshall and Dan Amir. Theory of curriculum
learning, with convex loss functions. Journal of Machine
Learning Research (JMLR), 21(222):1-19, 2020.

Yongqin Xian, Gaurav Sharma Zeynep Akata, Quynh
Nguyen, Matthias Hein, and Bernt Schiele. Latent embed-
dings for zero-shot classification. In Computer Vision and
Pattern Recognition (CVPR), 2016.

Zhicheng Yan, Vignesh Jagadeesh, Dennis DeCoste, Wei Di,
and Robinson Piramuthu. HD-CNN: hierarchical deep con-
volutional neural network for image classification. 2015.
Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing,
Laurent El Ghaoui, and Michael 1. Jordan. Theoretically
principled trade-off between robustness and accuracy. In In-
ternational Conference on Machine Learning (ICML), 2019.

70



