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Abstract

Deep learning models are prone to being fooled by im-
perceptible perturbations known as adversarial attacks. In
this work, we study how equipping models with Test-time
Transformation Ensembling (TTE) can work as a reliable
defense against such attacks. While transforming the input
data, both at train and test times, is known to enhance model
performance, its effects on adversarial robustness have not
been studied. Here, we present a comprehensive empirical
study of the impact of TTE, in the form of widely-used image
transforms, on adversarial robustness. We show that TTE
consistently improves model robustness against a variety of
powerful attacks without any need for re-training, and that
this improvement comes at virtually no trade-off with accu-
racy on clean samples. Finally, we show that the benefits
of TTE transfer even to the certified robustness domain, in
which TTE provides sizable and consistent improvements.

1. Introduction

The onset of deep learning techniques has revolution-
ized several fields such as Computer Vision [28], Natu-
ral Language Processing [34], and Reinforcement Learn-
ing [35]. In the realm of computer vision, deep learning
based methods have even surpassed human-level perfor-
mance on challenging datasets [21]. Despite the success of
deep learning-based systems, researchers have noticed se-
vere brittleness in their output: while remarkably accurate,
they are extremely sensitive to imperceptible perturbations,
now known as adversarial attacks [51].

The discovery of this adversarial vulnerability, accord-
ingly, has led to a large number of works addressing security
concerns by proposing methods to defend models against
attacks [7, 19, 32, 18]. Beyond such security concerns,
adversarial vulnerability also sheds doubt on the nature of
the impressive performance that computer vision systems
achieve. While some of these systems may have been in-
spired by the human visual system, their lack of robustness

Figure 1. Test-time Transformation Ensembling (TTE) enhances

adversarial robustness. Introducing TTE increases the adversar-
ial robustness of several state-of-the-art defenses on CIFAR10.

could suggest that their inner workings strongly differ from
those of humans [56].

We highlight that current recognition methods perform
predictions on single and static images. While this exper-
imental setup is practical, it strongly differs from the way
in which humans recognize objects in the real world. We
note that this mismatch in how models perform predictions
may be a factor contributing to the adversarial vulnerability:
studies in developmental psychology have noted how tod-
dlers jointly exploit object permanence [41, 5] and multiple
views of objects to develop efficient, accurate and robust
visual systems [49, 33, 24, 40, 4]. That is, while humans
may perform recognition by ensembling multiple views of
the intended object, machine learning-based systems tradi-
tionally focus on a single view. Inspired by these observa-
tions, we argue that ensembling predictions of transformed
versions of an image can be cast as a simple and coarse sim-
ulation of how humans recognize objects in the real world.

Indeed, studies have shown that harnessing transform-
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based augmentation of data, both at train and test time,
can provide consistent performance boosts in tasks such as
detection [30] and recognition [28, 47, 22]. Other works
have shown that randomization-based transforms and noise
injection can be exploited to improve adversarial robust-
ness [42, 31], providing evidence that randomization is use-
ful for defending against adversaries.

In this work, we study the effect that Test-time Trans-
formation Ensembling (TTE) of model predictions on de-
terministically-transformed versions of an image has on ad-
versarial robustness. Specifically, we explore ensembling
predictions over transformed versions of an image by apply-
ing two semantics-preserving transforms customarily used
in computer vision (crops and flips). We present a com-
prehensive empirical study assessing the impact of intro-
ducing TTE against state-of-the-art adversaries. Our ex-
periments show that equipping deep networks with TTE
provides consistent improvements in adversarial robustness
across datasets and attacks, while coming at virtually no
cost to accuracy on clean samples. TTE is modular and
versatile, and we show how it improves robustness of state-
of-the-art defenses across-the-board (Figure 1). We further
validate the versatility of TTE by showing how it can also
boost certified robustness.

Contributions: (1) We present Test-time Transforma-
tion Ensembling (TTE), where we apply two semantics-
preserving transforms (crops and flips), to enhance network
robustness against adversaries. Upgrading a model with
TTE does not need re-training and it can be implemented
with less than 30 lines of code. To ensure reproducibil-
ity, we will make our full implementation in PyTorch [39]
publicly available 1

(2) We show how TTE consistently pro-
vides significant improvements in adversarial robustness for
top-performing methods on the AutoAttack benchmark [13],
reaching improvements of 2.04% and 1.29% on CIFAR10
and CIFAR100, respectively (Figure 1). TTE’s benefits
also extend to the large-scale ImageNet dataset [15], where
we enhance the state-of-the-art defense, Feature Denois-
ing [56], and conduct the first large-scale evaluation of ad-
versarial robustness against AutoAttack on ImageNet. We
find that, even in the ImageNet domain, TTE can provide
boosts of 2.21%. (3) We find that the benefits of TTE are not
confined to the empirical assessment of adversarial robust-
ness: TTE can also boost certified defenses. Specifically,
on CIFAR10, introducing TTE into Randomized Smooth-
ing [11] and SmoothAdv [44] provides a boost of 10% and
7% in Average Certified Radius, respectively.

2. Related work

Data transforms. Classic transforms are behind most
augmentation techniques for preventing overfitting of Deep

1Code is available at https://github.com/juancprzs/TTE.

Neural Networks [28]. These transforms are now a de
facto standard in training-routine implementations, and are
of such importance that automated learning of augmenta-
tion policies has been studied [14]. While transforms are
effective during training, a stream of works also showed
their benefits at test time [22, 50, 47, 28, 25, 37]. For in-
stance, Sermanet et al. [46] augment the input at test time
by including multi-scale information. Moreover, [30, 59]
enhanced detectors by ensembling the predictions on both
the original images and their transformed versions. In this
work, we observe that data transforms are related to the
“self-generated variability” phenomenon observed in in-
fants [49]. Inspired by this connection, we present a com-
prehensive empirical study of the effects of test-time trans-
forms on adversarial robustness.

Adversarial Robustness. Robustness to adversarial
noise is a pressing concern in the deep learning commu-
nity [19, 16]. However, evaluating adversarial robustness
has proven to be extremely difficult [6]. A large amount
of works have proposed both white-box attacks [29, 32, 36]
and black-box attacks [1, 2, 3, 17] to evaluate adversarial ro-
bustness. Recently, Croce et al. [13] proposed AutoAttack,
an ensemble of four attacks with automatic hyper-parameter
calibration that provides reliable assessments of adversarial
robustness. From the side of defenses, a stream of works
have aimed at developing models that are resistant to at-
tacks. These works include adversarial training [19, 32],
combining adversarial training with pre-training on exter-
nal data sources [23, 10, 26, 8], and TRADES [61], among
many others [55, 53, 45, 9]. In this work, we study how
defenses can be equipped with TTE to boost adversarial ro-
bustness as measured via AutoAttack.

Certified Defenses. The aforementioned empirical as-
sessment of adversarial robustness cannot provide guaran-
tees about the inexistence of adversarial examples for a
given classifier. This concern has incited interest in certi-
fied adversarial robustness, which aims at developing mod-
els whose predictions can be certified, i.e. predictions that
are verifiably constant within some radius around any in-
put [54, 43]. Here, we note that many approaches have
been proposed for the purpose of certification [60, 11, 44].
In this paper, we study the impact of TTE on certification
by experimenting with two well-known certified defenses:
Randomized Smoothing [11] and SmoothAdv [44]. Our ex-
periments find that TTE’s benefits also appear in certifica-
tion, where TTE can boost these defenses by sizable mar-
gins.

3. Methodology

We study the impact of introducing TTE on adversarial
robustness. We observe that traditional image transforms
can provide simple transforms to be used in TTE. Thus, we
aim at studying the impact that introducing customary im-

82

https://github.com/juancprzs/TTE


Algorithm 1 TTE Wrapper pseudo-code in PyTorch style.

# C: number of channels

# H: image height

# W: image width

# N: number of classes

class TTEWrapper:

def init(self, model, transforms):

# transforms: list of differentiable functions

self.model = model

self.transforms = [lambda x: x] # the identity

self.transforms += transforms

def forward(self, x):

# apply transforms

x = cat([t(x) for t in self.transforms])

# move transforms to the batch dimension

x = x.view(-1, C, H, W)

# forward

s = self.model(x)

# move scores of transforms to other dimension

s = s.view(len(self.transforms), -1, N)

# average scores across transforms dimension

return s.mean(dim=0)

cat: concatenation.

age transforms at test time has on adversarial robustness. In
particular, we set to study a simple TTE wrapper for trained
classification models. This wrapper is a module that re-
ceives an image, augments the image with a fixed set of
transforms, inputs the image to the model, and, finally, en-
sembles the outputs through averaging.

Our selection of transforms for the wrapper is based on
facilitating the assessment of adversarial robustness of the
wrapped model. Specifically, we are interested in wrap-
ping models and then properly conducting white-box at-
tacks, since these attacks are at the core of the most chal-
lenging adversarial settings. The transforms we select, thus,
must not hinder nor obstruct the computation of the gradient
with respect to the model’s input. Hence, we select three
well-known label-preserving transforms that are common
in training routines: (i) horizontal flips, (ii) padding-and-
cropping, and (iii) the composition of these two.

Note that these transforms are easily implemented in a
differentiable and deterministic manner: all transforms
are implemented by indexing the input tensor, which, dur-
ing the backward pass, translates to simply directing the
gradient to the selected indices. Further, we remark that
we refrain from introducing stochasticity in the transforms,
contrary to common implementations of training and test-
ing routines. That is, the set of transforms and their param-
eters are kept fixed after initialization: flips are performed
deterministically, and the sections being cropped are per-
manent. Once the set of transforms and their parameters
have been set, we instantiate the transforms and use them
for initializing the wrapper. Hence, we emphasize that our
approach does not hinder nor obstruct computing the gradi-
ent of the wrapper’s output with respect to its input. Please
refer to Algorithm 1 for pseudo-code of the wrapper, and to
the Supplementary Material for the pseudo-codes of the
transforms we study.

Table 1. TTE and undefended models. We test the impact of TTE
on undefended models. TTE increases the adversarial robustness
of undefended models by sizable margins. Best results in bold.

CIFAR10

Method Clean Robust Diff.
ResNet-18 92.58 16.18 +13.63ResNet-18 + TTE 93.42 29.81

CIFAR100

ResNet-18 76.66 0.72 +0.96ResNet-18 + TTE 77.57 1.68

In the following section, we conduct a comprehensive
empirical study of the adversarial robustness effects of
equipping models with TTE. Remarkably, we find that TTE
can consistently improve adversarial robustness across de-
fenses, while requiring less than 30 lines of code.

4. Experiments

We conduct a comprehensive empirical study regarding
the effects of TTE on adversarial robustness. We vary de-
fenses, datasets, and attacks, while also gathering insights
into TTE’s inner workings. We find that TTE yields sizable
and consistent boosts in robustness, both against strong at-
tacks and for certification purposes.

4.1. Adversarial Robustness Assessment

A reliable assessment of adversarial robustness is funda-
mental to our study. Hence, we use the challenging AutoAt-
tack benchmark [13] for estimating adversarial robustness.
AutoAttack is a parameter-free ensemble of diverse attacks
that has shown outstanding capabilities of identifying vul-
nerabilities in adversarial robustness defenses. AutoAttack
is composed of: AutoPGD, aiming at optimizing either
Cross Entropy (CE) or a targeted version of a Difference-
of-Logits-Ratio [13] (denoted as APGD-CE and APGD-T,
respectively); targeted Fast Adaptive Boundary [12] (de-
noted as FAB-T) that aims at perturbation minimization and
has shown promising results against gradient-masking; and
Square Attack [1], a norm-bounded score-based black-box
attack that does not rely on gradient information (denoted as
Square). High performance against such a diverse and pow-
erful ensemble has shown to provide an accurate assessment
of adversarial robustness [13].

For all experiments, we run AutoAttack and report both
clean accuracy and Robust accuracy, where the latter is de-
fined as the per-instance worst case across all attacks. For
the main experiments and with completeness in mind, we
also report the accuracy against individual attacks compos-
ing AutoAttack.

4.2. TTE on Undefended Models

We begin our study by analyzing the effect of introduc-
ing TTE on the adversarial robustness of undefended mod-
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els. We study this setting by conducting nominal training
of a ResNet-18 [22] on CIFAR10 and CIFAR100 [27], and
then attacking these models both with and without TTE.
The attack strength values (✏) that the robustness commu-
nity usually employs are capable of dropping the accuracy
of undefended models to approximately 0% [7]. Thus,
for this experiment, we use a weaker attack strength of
✏ = 2/255 that allows us to observe variations in adversar-
ial robustness. Table 1 summarizes the results. For both
datasets, we find consistent increments in both clean and ro-
bust accuracy. In particular, robust accuracy increases by a
remarkable 13% on CIFAR10, and by ⇡ 1% on CIFAR100.
Our results thus provide evidence that TTE is capable of
boosting the adversarial robustness of models without hurt-
ing accuracy on clean samples.

4.3. Boosting the State-of-the-Art

CIFAR. The AutoAttack benchmark hosts an online
leaderboard2, where current state-of-the-art (SOTA) de-
fenses on various datasets are ranked according to their
performance against AutoAttack. To evaluate the impact
of equipping SOTA defenses with TTE, we download pre-
trained models of defense approaches from the CIFAR10
leaderboard, add our TTE wrapper, and run AutoAttack on
them with a perturbation budget of ✏ = 8/255. Our selection
of defenses for evaluation is based on high-performance in
the AutoAttack benchmark and availability of the trained
models (either from the official repository or upon contact-
ing the respective authors). In particular, we test TTE on
six high-performing defenses: Adversarial Training with
Early Stopping (ATES) [48], Tradeoff-inspired Adversarial
Defense via Surrogate-loss minimization (TRADES) [61],
ImageNet pre-training (IN-Pret) [23], robust-network prun-
ing (HYDRA) [45], Misclassification Aware Adversarial
Training (MART) [53], Adversarial Weight Perturbation
(AWP) [55], and the method of Gowal et al. [20]. Note that
only three of these defenses are available for CIFAR100, as
this dataset is much less studied for adversarial robustness.

We report the performance of the standard and TTE-
enhanced versions of these defenses in Table 2. In line with
previous works [28, 47, 22], our results show how equip-
ping models with TTE generally enhances their clean ac-
curacy. More importantly, we observe that enhancing de-
fenses with TTE consistently increases the robustness of all
defenses across both attacks and datasets. In CIFAR10, for
instance, TTE increases robust accuracy by 2.04% on av-
erage. Analogously, in CIFAR100, we observe an average
increase of 1.29%.

Note that the strongest defense for CIFAR10 is Gowal et
al., and for CIFAR100 the strongest defense is AWP. Equip-
ping these top-performing defenses with TTE increases

2Available at https://github.com/fra31/auto-attack

their robust accuracy by 1.26% and 0.86% on CIFAR10 and
CIFAR100, respectively.

ImageNet. Adversarial robustness defenses in Ima-
geNet [15] are much less common than in CIFAR, mainly
due to the computational costs associated with conducting
adversarial attacks on such large images and vast amount
of instances. A recent robustness assessment by Dong et
al. [16] suggests that the SOTA defense on ImageNet is
Feature Denoising (FD) [56], which combines large-scale
adversarial training [32] with the introduction of denois-
ing blocks into the model’s architecture. We download the
pre-trained models from the official implementation and run
AutoAttack on the standard and TTE-enhanced versions3.
Following the methodology of [56], we run attacks with a
perturbation budget of ✏ = 16/255.

We report the results of this experiment in Table 3. These
results show that, even in the large-scale regime of Ima-
geNet, TTE is still able to provide improvements in adver-
sarial robustness. In fact, we observe consistent increase in
accuracy against every attack of the AutoAttack benchmark.
In particular, we find that TTE is able to provide a remark-
able improvement of 2.21% in robust accuracy. It is worth-
while to mention that we report the results corresponding to
the best TTE selection, while leaving the extensive ablation
results to the supplementary material.

4.4. Transform Selection

In Section 3, we established that the transforms consid-
ered in this study are horizontal flips, pad-and-crop, and the
composition of these two. These transforms were selected
so as to facilitate the assessment of adversarial robustness
by introducing transforms that are both differentiable and
deterministic. Since the padding-and-cropping operation is
parameterized by the indices of the crop (the padding size
is another parameter, but in our study we kept it fixed to 4),
there is a large number of transforms that could be gener-
ated from an image. The combination of such transforms
with horizontal flipping yields a vast search space. In this
section, we study a simple set of these transforms, and show
that a large majority of transforms already provides sizable
gains in adversarial robustness.

As subjects of our study, we choose TRADES [61] for
experiments on CIFAR10 and FD [56] for experiments on
ImageNet. We use the wrapper introduced in Section 3
around both models (as obtained from their official imple-
mentations), and test various selections of transforms for
initializing the wrapper. In particular, we consider: (i) flip,
(ii) crops, (iii) flip + crops, and (iv) flip + crops + flipped-
crops. Whenever we use a crop, we vary the number of
extracted crops from one to four. For all the cases that in-

3Since this model was not trained on zero-padded images, we extract
224⇥224 crops from the 256⇥256 center crop of the resized image. We
resize the shortest side to 256 while preserving the height-width ratio.
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Table 2. Adversarial robustness on CIFAR. We compare the standard and the best TTE-enhanced versions of several defenses from the
AutoAttack leaderboard, whose models are publicly available, on the CIFAR10 and CIFAR100 datasets. We report the clean accuracy,
the adversarial accuracy against the individual attacks that compose AutoAttack, the worst-case (Robust) accuracy in (%), and the average
difference across datasets. Best results in clean and robust accuracies are shown in boldface. Note that all defenses gain adversarial
robustness when equipped with TTE.

Method Clean APGD-CE APGD-T FAB-T Square Robust Difference Average

C
IF

A
R

10

ATES [48] 86.84 53.5 51.5 51.91 59.77 51.46 +2.71

+2.04

ATES + TTE 86.86 56.48 54.19 54.70 60.67 54.17

TRADES [61] 84.92 55.31 53.12 53.55 59.41 53.11 +2.38TRADES + TTE 85.14 57.46 55.51 55.88 60.22 55.49

IN-Pret [23] 87.11 57.65 55.32 55.68 62.40 54.92 +1.51IN-Pret + TTE 87.13 59.06 56.44 56.73 63.14 56.43

MART [53] 87.50 62.18 56.80 57.34 64.87 56.75 +2.19MART + TTE 87.79 63.95 58.94 59.51 65.62 58.94

HYDRA [45] 88.98 60.13 57.66 58.42 65.01 57.64 +2.74HYDRA + TTE 88.82 62.82 60.40 60.91 66.03 60.38

AWP [55] 88.25 63.81 60.53 60.98 66.18 60.53 +1.46AWP + TTE 88.07 64.95 61.99 62.52 66.48 61.99

Gowal et al. [20] 89.48 66.16 63.26 63.74 69.10 63.29 +1.26Gowal et al. + TTE 89.41 67.19 64.55 64.88 69.29 64.55

C
IF

A
R

10
0

ATES [48] 62.82 26.78 24.98 25.23 31.27 24.96 +1.83

+1.29

ATES + TTE 63.47 28.9 26.8 27.15 32.21 26.79

IN-Pret [23] 59.37 33.45 29.03 29.34 34.55 28.61 +1.19IN-Pret + TTE 59.38 33.96 29.59 29.87 34.86 29.50

AWP [55] 60.38 33.56 29.16 29.48 34.66 29.15 +0.86AWP + TTE 60.39 34.11 30.03 30.26 34.64 30.01

Table 3. Adversarial robustness on ImageNet. We compare the standard and the best TTE-enhanced versions of Feature Denoising [56]
on the ImageNet dataset. We report the clean accuracy, the adversarial accuracy against individual attacks comprising AutoAttack, and the
worst-case (Robust) accuracy in (%). Following the experimental setup in [56], we run this experiment with ✏ = 16/255.

Method Clean APGD-CE APGD-T FAB-T Square Robust Difference
FD [56] 65.32 7.91 4.31 7.87 23.76 4.23 +2.21FD + TTE 65.87 9.29 6.53 9.23 26.34 6.44

clude crops, we randomly initialize the indices of the crop,
and keep them fixed after, i.e. note that the transform is,
again, deterministic.

We report the evaluation of these transforms for
TRADES in Table 4 and for FD4 in Table 5. Our results
show that any of the studied transforms provides gains in
adversarial robustness. Further, we note that even simple
transforms already provide sizable gains. For instance, sim-
ply ensembling the original input with its flipped version
boosts robust accuracies by 1.70% and 0.97% for TRADES
and FD, respectively. For TRADES, we obtain the largest
increase both in clean and robust accuracies with an en-
semble composed of a flip, three crops, and three flipped-
crops. This particular set of transforms achieves a remark-
able boost of 2.38% in robust accuracy. However, we report
the largest gain in robust accuracy (+1.98%) for FD when
the image is processed jointly with four crops, four flipped-
crops and the flipped instance. Our results show that TTE
provides consistent gains in adversarial robustness across a

4Due to computational costs, we test FD with the official implementa-
tion’s 30-step PDG attack (PGD30) under the `1 norm with ✏ = 16/255.

simple set of transforms for both benchmarks. This out-
come suggests that, despite the large size of the space of
possible transforms, finding a set of transforms that pro-
vides sizable gains in adversarial robustness is effortless. In
particular, in our experiments, all the transforms provided
gains in adversarial robustness.

4.5. Are all crops created equal?

In Section 4.4, we studied how several transforms affect
adversarial robustness. From Tables 4 and 5, we notice an
odd phenomenon: increasing the number of crops does not
always yield larger robustness gains. Since the crop location
is random, this phenomenon suggests that there are crops
that provide larger robustness gains than others.

We conduct an exhaustive search over the possible crops,
and record changes in clean and robust accuracy. As men-
tioned in Section 4.4, we fix the padding size to 4 in the
pad-and-crop transform. Hence, the height and width of
each image increases by 8 (each side increases by 4). Thus,
the total number of possible crops is (8 + 1)2 = 81.

We conduct this experiment on TRADES and evalu-
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Table 4. Adversarial robustness gains of various transforms

on CIFAR10. We test the impact in adversarial robustness of
introducing various transforms to TTE on TRADES. We report
clean and robust accuracies, and the difference in robustness be-
tween each TTE-enhanced model and TRADES. Robust accura-
cies larger than that of TRADES are shown in boldface.

Method Clean Robust Diff.
TRADES 84.92 53.11 -
+ flip 85.07 54.81 +1.70
+ 1 crop 84.86 53.35 +0.24
+ 2 crops 84.85 53.35 +0.24
+ 3 crops 84.89 53.63 +0.52
+ 4 crops 84.87 53.34 +0.23
+ flip + 1 crop 85.09 55.08 +1.97
+ flip + 2 crops 84.82 54.68 +1.57
+ flip + 3 crops 85.07 54.76 +1.65
+ flip + 4 crops 85.11 54.43 +1.32
+ flip + 1 crop + 1 flipped-crop 85.13 55.19 +2.08
+ flip + 2 crops + 2 flipped-crops 85.06 55.24 +2.13
+ flip + 3 crops + 3 flipped-crops 85.14 55.49 +2.38
+ flip + 4 crops + 4 flipped-crops 85.13 55.49 +2.38

Table 5. Adversarial robustness gains of various transforms on

ImageNet. We test the impact in adversarial robustness of intro-
ducing various transforms to TTE on Feature Denoising (FD) [56].
We report clean and PGD30 accuracies, and the difference in ro-
bustness between each TTE-enhanced model and FD. PGD30 ac-
curacies larger than that of FD are shown in boldface.

Method Clean PGD30 Diff.
FD [56] 65.32 50.20 -
+ flip 65.38 51.17 +0.97
+ 1 crop 65.50 51.07 +0.87
+ 2 crops 65.51 50.84 +0.64
+ 3 crops 65.78 51.20 +1.00
+ 4 crops 65.74 51.21 +1.01
+ flip + 1 crop 65.56 51.69 +1.49
+ flip + 2 crops 65.59 51.77 +1.57
+ flip + 3 crops 65.81 51.80 +1.60
+ flip + 4 crops 65.76 51.43 +1.23
+ flip + 1 crop + 1 flipped-crop 65.69 51.47 +1.27
+ flip + 2 crops + 2 flipped-crops 65.68 51.36 +1.15
+ flip + 3 crops + 3 flipped-crops 65.87 51.88 +1.68
+ flip + 4 crops + 4 flipped-crops 65.85 52.17 +1.98

ate on CIFAR10. Since the evaluation of each model
is computationally expensive, we refrain from using the
official TRADES model (a large WideResNet-34-10 [58]
model), and rather train a smaller ResNet-18 [22] model
with the official TRADES implementation. This trained
model achieves a clean accuracy of 80.96% and a robust
accuracy of 48.64% against AutoAttack. For studying the
impact of specific crops on robustness, we are interested in
the evaluation of the model under two settings: (i) when the
model’s input is only the selected crop, i.e. the model is not
given the original image, and (ii) when the model’s input is
both the original image and the crop, that is, TTE itself.

Table 6. Accuracy under APGD-T attacks vs. optimization it-

erations and attack strength. We study how accuracy under
APGD-T attacks changes as we vary (i) iterations for optimiza-
tion (top table), and (ii) attack strength (bottom table). Our results
suggest that TTE does not induce gradient obfuscation.

Optimization iterations

Iterations 5 10 50 100
TRADES 49.92 49.12 48.71 48.69
TRADES + TTE 52.11 51.54 51.41 51.40

Attack strength (✏)
✏ 8/255 16/255 32/255 64/255

TRADES 48.69 15.84 0.72 0.00
TRADES + TTE 51.40 18.85 0.95 0.01

Figure 5 displays our results as heatmaps. The x and y
coordinates of the heatmap range from 0 through 8, and are
interpreted as the offset from the top-left corner of the zero-
padded version of the image. These heatmaps show appeal-
ing spatial patterns. We notice that when using only the
cropped versions of the images, spatial translations closer
to the origin provide the best performance in both clean
and robust accuracy. In particular, cropped images can
even achieve better clean and robust accuracy than their
uncropped versions under most one-pixel shifts. However,
when using the original image and its cropped version, the
optimal crops shift towards the edges. In general, crops
that arise from translations in both directions tend to consis-
tently boost performance. Although a clear pattern in clean
accuracy is elusive, robust accuracy tends to symmetrically
improve as the selected crop moves towards the corners of
the zero-padded image, with the exception of the corners
themselves. This result implies that the model benefits from
seeing the most shifted views of the image up to a certain
threshold, but further shifts may be counterproductive.

4.6. Is TTE obfuscating the gradient?

In this paper, we construct the set of transforms to be
studied based on a single criterion: that such transforms
would ease the assessment of adversarial robustness. We
consider transforms that would not hinder nor obstruct the
computation of the gradient with respect to the input image.
Thus, we study transforms that are differentiable and deter-
ministic. Based on this criterion, we expect that adding the
TTE wrapper does not lead to gradient obfuscation, which
could yield an inaccurate assessment of adversarial robust-
ness and, hence, a false sense of security [2]. Here, we
empirically test this hypothesis. In particular, we are in-
terested in knowing whether TTE prevents the model from
producing “useful gradients” for iterative optimization at-
tacks [38, 2]. Following [2], we check how the behavior
of the model’s performance changes when the iterative at-
tack’s parameters vary in terms of: (i) number of optimiza-
tion steps and (ii) attack strength.

This experiment requires a large number of runs. Hence,
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Figure 2. Impact of specific crops on performance. The heatmaps depict the clean and robust accuracies as a function of the location of
the crops. The first two plots are obtained by only feeding cropped versions of CIFAR10 images, and the last two by feeding the original
image and its cropped version. We assessed a total of 81 crops corresponding to all the possible translations in each scenario.

we follow the same experimental setup as in Section 4.5
and use a ResNet-18 model trained with TRADES. We
compare this defense against its TTE-enhanced version that
could cause, in theory, the largest effect on gradient obfus-
cation: original image + flip + 4 crops + 4 flipped-crops.
Hence, we expect this experiment to provide an upper-
bound to the (possible) gradient obfuscation effect of intro-
ducing TTE. We compute the adversarial accuracy of these
defenses against the APGD-T [13] attack from the AutoAt-
tack ensemble, which is a strong iterative gradient-based ad-
versary. We vary the number of optimization steps from 1
to 100 (the default number of steps for APGD-T in AutoAt-
tack), and the attack strength from 1/255 to 64/255.

We report our main results in Table 6, and detail the rest
in the supplementary material. We find that TTE suffers
both when increasing the attack’s number of iterations and
its strength. Notably, the performance eventually reaches
approximately 0% when ✏ = 64/255. Combined with the
observation that white-box attacks are more successful than
black-box attacks in fooling an TTE-enhanced model (as
shown in Tables 2 and 3), these results suggest that intro-
ducing TTE does not induce gradient obfuscation.

4.7. Matching train- and test-time transforms

Our experiments have considered three transforms: flip,
pad-and-crop, and the combination of these two. We have
shown how applying these transforms at test time boosts the
robustness of several defenses. We note that all the defenses
we studied also use these transforms at train time, as is com-
mon practice in the training routines for image classifiers.
Thus, in all our experiments, a match has existed between
transforms on which defenses were trained and the ones we
introduced at test time. Here, we experiment with introduc-
ing a mismatch between the train- and test-time transforms.
Specifically, we study two setups: (i) introducing a trans-
form that is not seen during training (Gaussian filtering),
and (ii) training the model by removing the pad-and-crop
transform and then testing on padded-and-cropped images.

Gaussian filtering. We study the impact of introduc-
ing a Gaussian-filtering transform into TTE. We choose this
transform based on spectral properties of adversarial exam-

Table 7. Matching train- and test-time transforms. We in-
troduce a mismatch between train- and test-time transforms and
record variations in performance. We induce a mismatch by (i)
testing with TTE including Gaussian-filtering (top sub-table), and
(ii) training a TRADES model without the pad-and-crop transfor-
mation (TRADESnc) and testing with TTE including pad-and-crop
transforms (bottom sub-table). Results on CIFAR10 show that
TTE’s boosts require matching train- and test-time transforms.

Method Clean Robust Diff.
TRADES 84.92 53.11 -
+ Gaussian (k = 3, � = 1) 81.59 50.21 -2.90
+ Gaussian (k = 3, � = 2) 81.27 49.63 -3.48
+ Gaussian (k = 5, � = 1) 80.36 49.19 -3.92
+ Gaussian (k = 5, � = 2) 76.78 45.71 -7.40
TRADESnc 82.40 48.64 -4.47
TRADESnc + 1 crop 81.28 47.04 -6.07
TRADESnc + 2 crops 77.03 42.23 -10.88
TRADESnc + 3 crops 80.66 46.57 -6.54
TRADESnc + 4 crops 77.79 41.39 -11.72

ples, as recent works find a relation between high-frequency
components and adversarial examples [52, 57]. These find-
ings suggest that using Gaussian filtering, a low-pass filter,
could increase the adversarial robustness of a defense. Note
that this transform can also be implemented in a differen-
tiable manner, complying with our requirements.

Thus, we modify TTE to only include Gaussian filtering,
equip TRADES with TTE, and conduct attacks. We con-
sider Gaussian filters with filter sizes k 2 {3, 5}, and stan-
dard deviations � 2 {1, 2}. We report the results in Table 7
(top sub-table). Results indicate that introducing Gaussian
filtering at test time, when the defense was not trained on
such transforms, is detrimental to adversarial robustness.

Removing pad-and-crop from training. We train a
TRADES model by removing the usual pad-and-crop trans-
form, and refer to this model as TRADESnc. We record
the performance of TRADESnc without TTE and with TTE
based only on pad-and-crop transforms. We vary the num-
ber of crops from one to four. We report results in Table 7
(bottom sub-table). We note that (i) the pad-and-crop train-
time transform is important for TRADES: removing this
transform decreases clean and robust accuracies, approxi-
mately, by 2%; and (ii) adding a padded-and-cropped ver-
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Figure 3. Boosting certified defenses with TTE. We introduce TTE into two certified defenses: Randomized Smoothing (RS) [11] and
SmoothAdv [44] (top and bottom row, respectively). Each plot reports a certified accuracy curve. The first three columns show certified
accuracy for � 2 {0.12, 0.25, 0.5}, respectively, and each legend reports the Average Certified Radius (ACR). The fourth column shows
the envelope of the corresponding first three plots: the largest certificate that can be granted to each method across � values.

sion of the image is detrimental to the adversarial robust-
ness of TRADESnc: any number of additional transformed
versions of the image hurt both clean and robust accura-
cies. Our results suggest that, for a TRADES model, there
is large distribution mismatch between the original images
and their padded-and-cropped versions.

The results in Table 7 indicate that matching train- and
test-time transforms is fundamental for adversarial robust-
ness. That is, simulating TTE through image transforms is
beneficial for adversarial robustness, if and only if, a match
exists between train- and test-time transforms.

4.8. Boosting Certified Defenses

Our experiments show that TTE provides improvements
in the empirical assessment of adversarial robustness. Here,
we test whether these improvements also transfer to the do-
main of certifiably robust models. Formally, for an input x
with true label y, a model f is certifiably robust at x with
radius R if f(x) = f(x + �) = y 8 k�kp  R. Thus, the
certified accuracy of a model f at a radius R is defined as
the portion of the test set for which the model is certifiably
robust with a radius of at least R. Recently, two closely-
related methods have been proposed for certification. Co-
hen et al. [11] proposed Randomized Smoothing (RS), a
technique that provides tight certified classification to an
input by assigning the most probable class predicted by f
when x is exposed to Gaussian noise of the form N (0,�2I).
Moreover, Salman et al. [44] proposed SmoothAdv, extend-
ing RS with adversarial training to boost certification.

We study TTE’s effect on certification on CIFAR10. We
follow [11] for RS and train a Gaussian-augmented ResNet-
18. For SmoothAdv, we follow [44] and apply Gaussian
augmentation on PGD-generated images. We study certifi-
cation in the `2 sense and test with � 2 {0.12, 0.25, 0.5}.

We certify TTE-enhanced models on the test set (Stest) and
report both certification curves and the Average Certified
Radius [60], ACR = 1/|Stest|

P
(x,y)2Stest

R(x) {f(x)=y},
where is the indicator function.

We summarize our results in Figure 3. We report a curve
per � and the curves’ envelope, i.e. the largest certificate
that can be granted to each defense across all � values. We
observe that TTE consistently improves certified accuracy
for all radii, for all values of �, and for both defenses. In
particular, at � = 0.5, TTE improves the ACR by approx-
imately 10% and 7% on RS and SmoothAdv, respectively.
We remark that equipping these certified defenses with TTE
comes at no cost during training, as TTE is only used at test
time. That is, similar to our experiments on the empirical
assessment of adversarial robustness, TTE provides boosts
in the certification domain without requiring re-training.

Our results demonstrate that the benefits of TTE are not
confined to the empirical assessment of robustness: TTE
can also enhance certified adversarial robustness.

5. Conclusions

In this work, we analyzed the effect of using Test-time
Transformation Ensembling (TTE) on adversarial robust-
ness. We conducted a comprehensive empirical study on the
adversarial robustness effects of leveraging TTE through
customary image transforms. Our results demonstrate that
TTE is a simple yet effective technique for improving ad-
versarial robustness. Notably, we showed that the perfor-
mance of several SOTA adversarial robustness defenses can
be boosted by including TTE, and, further, that these bene-
fits transfer to the domain of certified defenses.
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